e-ISSN 2231-8534
ISSN 0128-7702
Muhammad Safwan Hafiz Zaudin, Suhaizan Lob, Fauziah Tufail Ahmad and Nurul Faziha Ibrahim
Pertanika Journal of Social Science and Humanities, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.15
Keywords: Bitter gourd, cucurbitacin, fertigation, high-performance liquid chromatography, phytochemical
Published on: 27 August 2024
Bitter gourd is a beneficial and easily accessible plant commonly utilised as a food source and medicinal herb. This plant produces numerous types of phytochemicals, especially when triggered by elicitors. It is also well known for its bitter taste, which is contributed by one of its phytochemical contents called cucurbitacin. This study determines the different levels of cucurbitacins B and E in the plants from two different planting methods, conventional and fertigation. Fruits, leaves, stems, and roots of bitter gourd plants from the two different planting methods were harvested for extraction using the sonication extraction method. The extraction solvents used were n-hexane, chloroform, and 80% ethanol. The extract’s cucurbitacins B and E content were identified and quantified using high-performance liquid chromatography. A preliminary rapid test using the Salkowski’s test to detect triterpenoids showed positive results for all sample runs. Results indicate significant variations in cucurbitacin levels across plant parts and cultivation methods. This study found that the content of cucurbitacin B in leaves of the fertigation planting method was the highest (208.0±0.4 ppm). Cucurbitacin B content in fruits was notably higher in both fertigation (200.0±1.3 ppm) and conventional (200.0±5.0 ppm) methods compared to other plant parts. However, leaves in the conventional method showed a significantly lower cucurbitacin B content (122.0±5.0 ppm). All plant parts were significantly different for cucurbitacin E, with the stem from the conventional planting method having the highest level of cucurbitacin E (31.0±1.0 ppm). Thus, it is concluded that plant parts and type of planting method can affect the cucurbitacin content in bitter gourd.
Adedokun, K. A., Imodoye, S. O., Bello, I. O., Lanihun, A.-A., & Bello, I. O. (2023). Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery. In C. Egbuna, M. Rudrapal, & H. Tijjani (Eds.), Phytochemistry, computational tools and databases in drug discovery (pp. 393–455). Elsevier. https://doi.org/10.1016/b978-0-323-90593-0.00017-4
Ahamad, J., Amin, S., & Mir, S. R. (2017). Momordica charantia Linn. (Cucurbitaceae): Review on phytochemistry and pharmacology. Research Journal of Phytochemistry, 11(2), 53–65.
Ahmed, M. S., & Halaweish, F. T. (2014). Cucurbitacins: potential candidates targeting mitogenactivated protein kinase pathway for treatment of melanoma. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(2), 162–167. https://doi.org/10.3109/14756366.2012.762646
Akbar, G., Hamilton, G., Hussain, Z., & Yasin, M. (2007). Problems and potentials of permanent raised bed cropping systems in Pakistan. Pakistan Journal of Water Resource, 11(1), 11-21.
Anem, M. (2017). Peria - Teknologi Tanaman (Part 2) [Bitter gourd – Plant technology (Part 2)]. Anim Agro Technology. http://animhosnan.blogspot.com/2017/03/peria-teknologi-tanaman-part-2.html
Attar, U. A., & Ghane, S. G. (2018). Optimized extraction of anti-cancer compound – Cucurbitacin I and LC–MS identification of major metabolites from wild bottle gourd (Lagenaria siceraria (Molina) Standl.). South African Journal of Botany, 119, 181–187. https://doi.org/10.1016/j.sajb.2018.09.006
Chanda, J., Biswas, S., Kar, A., & Mukherjee, P. K. (2020). Determination of cucurbitacin E in some selected herbs of ayurvedic importance through RP-HPLC. Journal of Ayurveda and Integrative Medicine, 11(3), 287–293. https://doi.org/10.1016/j.jaim.2019.01.002
Chekka, S. V., & Mantipelly, N. K. (2020). Momordica charantia: A natural medicinal plant. GSC Biological and Pharmaceutical Sciences, 12(2), 129–135. https://doi.org/10.30574/gscbps.2020.12.2.0251
da Rocha Galucio, N. C., de Araújo Moysés, D., Pina, J. R. S., Marinho, P. S. B., Júnior, P. C. G., Cruz, J. N., Vale, V. V., Khayat, A. S., & do Rosario Marinho, A. M. (2022). Antiproliferative, genotoxic activities, and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. Arabian Journal of Chemistry, 15(2), 103589. https://doi.org/10.1016/j.arabjc.2021.103589
Dhillon, N. P. S., Hanson, P., Chen, W., Srinivasan, R., Kenyon, L., Yang, R.-Y., Luoh, J. W., & Mecozzi, M. (2017). Suggested cultural practices for bitter gourd. World Vegetable Center. https://growables.com/informationVeg/documents/BitterGourdCulturalAVRDC.pdf
Gayathry, K. S., & John, J. A. (2022). A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Production, Processing, and Nutrition, 4, 10. https://doi.org/10.1186/s43014-022-00089-x
Gupta, A. (n.d.). Re: How does Salkowski’s test for steroid content work? https://www.researchgate.net/post/How-does-Salkowskis-Test-for-Steroid-content-work/64852a2b592c1acca70dcccb/citation/download
Haq, F. U., Ali, A., Khan, M. N., Shah, S. M. Z., Kandel, R. C., Aziz, N., Adhikari, A., Choudhary, M. I., Ur-Rahman, A., El‐Seedi, H. R., & Musharraf, S. G. (2019). Metabolite profiling and quantitation of cucurbitacins in Cucurbitaceae plants by liquid chromatography coupled to tandem mass spectrometry. Scientific Reports, 9, 15992. https://doi.org/10.1038/s41598-019-52404-1
Hunsakunachai, N., Nuengchamnong, N., Jiratchariyakul, W., Kummalue, T., & Khemawoot, P. (2019). Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC Complementary and Alternative Medicine, 19, 157. https://doi.org/10.1186/s12906-019-2568-7
Jia, S., Shen, M., Zhang, F., & Xie, M. (2017). Recent advances in Momordica charantia: Functional components and biological activities. International Journal of Molecular Sciences, 18(12), 2555. https://doi.org/10.3390/ijms18122555
Kadir, N. (2020). Baja AB: Kandungan, pembuatan dan penggunaan [AB Fertiliser: Content, manufacture, and use]. Root of Science. https://rootofscience.com/blog/2020/sains-pertanian/baja-ab-kandungan-pembuatan-dan-penggunaan/
Kant, S., & Kafkafi, U. (2005). Fertigation. In D. Hillel (Ed.), Encyclopedia of soils in the environment (pp 1-9). Academic Press. https://doi.org/10.1016/b978-0-12-409548-9.05161-7
Kaushik, U., Aeri, V., & Mir, S. R. (2015). Cucurbitacins - An insight into medicinal leads from nature. Pharmacognosy Reviews, 9(17), 12-18. https://doi.org/10.4103/0973-7847.156314
Key, J. A. (2014). Factors that affect the rate of reactions. https://opentextbc.ca/introductorychemistry/chapter/factors-that-affect-the-rate-of-reactions/
Kim, Y.-C., Choi, D., Zhang, C., Liu, H.-F., & Lee, S. (2018). Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Horticulture, Environment, and Biotechnology, 59, 557–566. https://doi.org/10.1007/s13580-018-0066-3
Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Hurry, V., & Hüner, N. P. A. (2017). Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress. In H. J. M. Hou, M. M. Najafpour, G. F. Moore, & S. I. Allakhverdiev (Eds.), Photosynthesis: Structures, mechanisms, and applications (pp. 185-202). Springer. https://doi.org/10.1007/978-3-319-48873-8_9
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89. https://doi.org/10.1016/j.plaphy.2020.01.006
Luo, F. X., Li, Q., Yu, L., Wang, C., & Qi, H. (2020). High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiology and Biochemistry, 154, 770–781. https://doi.org/10.1016/j.plaphy.2020.05.033
Machado, R. M. A., Alves-Pereira, I., & Ferreira, R. M. A. (2018). Plant growth, phytochemical accumulation, and antioxidant activity of substrate-grown spinach. Heliyon, 4(8), e00751. https://doi.org/10.1016/j.heliyon.2018.e00751
Maharaj, S., Watson, M. J., Skeene, R., McGaw, & D. R. (2017). Production of plant extracts by supercritical fluid extraction. The Journal of the Association of Professional Engineers of Trinidad and Tobago, 45(1), 20-25.
Maja, D., Mavengahama, S., & Mashilo, J. (2022). Cucurbitacin biosynthesis in cucurbit crops, their pharmaceutical value and agricultural application for management of biotic and abiotic stress: A review. South African Journal of Botany, 145, 3–12. https://doi.org/10.1016/j.sajb.2021.08.044
Mashilo, J., Odindo, A. O., Shimelis, H. A., Musege, P., Tesfay, S. Z., & Magwaza, L. S. (2018). Photosynthetic response of bottle gourd [Lagenaria sicerana (Molina) Standl.] to drought stress: Relationship between cucurbitacins accumulation and drought tolerance. Scientia Horticulturae, 231, 133–143. https://doi.org/10.1016/j.scienta.2017.12.027
Neugart, S., Baldermann, S., Hanschen, F. S., Klopsch, R., Wiesner-Reinhold, M., & Schreiner, M. (2018). The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors? Scientia Horticulturae, 233, 460–478. https://doi.org/10.1016/j.scienta.2017.12.038
Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., & Bansal, Y. K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
Pochapski, M. T., Fosquiera, E. C., Esmerino, L. A., dos Santos, E. B., Farago, P. V., Santos, F. A., & Groppo, F. C. (2011). Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves′ extract from Ipomoea batatas (L.) Lam. Pharmacognosy Magazine, 7(26), 165-170. https://doi.org/10.4103/0973-1296.80682
Ramakrishna, D., Suvarchala, V., Chaitanya, G., & Shasthree, T. (2019). Preliminary phytochemical screening of a medicinally important cucurbit Citrullus colocynthis (L.) Schard. Research Journal of Chemistry and Environment, 23(11), 41-55.
Ramezani, M., Rahmani, F., & Dehestani, A. (2017). Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of cucurbitacin E and on antibacterial property of Cucumis sativus. BMC Complementary and Alternative Medicine, 17, 295. https://doi.org/10.1186/s12906-017-1808-y
Saker, M., Gengaihi, S. E., Kamel, A., & Farid, M. (2010). Influence of differentiation state, salt stress, and methyl jasmonate on in vitro production of cucurbitacins from tissue cultures of Ecballium elaterium and Cucumis prophetarum endemic to Egypt. Medicinal and Aromatic Plant Science and Biotechnology, 4(1), 28-32.
Sanchita., & Sharma, A. (2018). Gene expression analysis in medicinal plants under abiotic stress conditions. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, & M. N. Alyemeni (Eds.), Plant metabolites and regulation under environmental stress (pp. 407-414). Academic Press. https://doi.org/10.1016/b978-0-12-812689-9.00023-6
Sasikala, M., & Sundaraganapathy, R. (2018). Analytical detection of triterpenoids present in the hydroalcoholic extract of Ipomoea aquatica Forssk. in South India. International Journal of ChemTech Research, 11(8), 274–282. https://doi.org/10.20902/ijctr.2018.110834
Schabort, J. C., & Teijema, H. L. (1968). The role of cucurbitacin Δ23-reductase in the breakdown pathway of toxic bitter principles in Cucurbita maxima. Phytochemistry, 7(12), 2107-2110. https://doi.org/10.1016/S0031-9422(00)85664-2
Shadung, K. G., & Mashela, P. W. (2016). Suitable organ(s) in wild Cucumis africanus for the production of nemafric-BL phytonematicide. Acta Agriculturae Scandinavica Section B - Soil and Plant Science, 66(5), 381–383. https://doi.org/10.1080/09064710.2015.1122829
Sikander, M., Malik, S., Chauhan, N., Κhan, P., Kumari, S., Kashyap, V. K., Khan, S., Ganju, A., Halaweish, F. T., Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2019). Cucurbitacin D reprograms glucose metabolic network in prostate cancer. Cancers, 11(3), 364. https://doi.org/10.3390/cancers11030364
Singh, B., & Sharma, R. A. (2014). Plant terpenes: Defense responses, phylogenetic analysis, regulation, and clinical applications. 3 Biotech, 5, 129–151. https://doi.org/10.1007/s13205-014-0220-2
Supraja, P., Basha, T., Nagaraju, C., Kiranmayee, P., & Usha, R. (2015). Identification of an alkaloid momordicin from fruits of Momordica charantia L. International Journal of Scientific and Engineering Research, 6(2), 168–172.
Torre, V. E. V.-L., Guarniz, W. S., Silva-Correa, C., Cruzado-Razco, L., & Siche, R. (2020). Antimicrobial activity and chemical composition of Momordica charantia: A review. Pharmacognosy Journal, 12(1), 213–222. https://doi.org/10.5530/pj.2020.12.32
Zaini, A. S., Aris, N. A., Putra, N. R., Hashib, S. A., Kamaruddin, M. J., Idham, Z., & Yunus, M. A. C. (2018). Comparison of charantin extract from Momordica charantia using modified supercritical carbon dioxide and Soxhlet extraction method. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 462–466. https://doi.org/10.11113/mjfas.v14n4.1092
ISSN 0128-7702
e-ISSN 2231-8534
Related Articles