e-ISSN 2231-8534
ISSN 0128-7702
Nurhuda Syahirah Ismail, Uswatun Hasanah Zaidan, Suhaili Shamsi, Siti Salwa Abd Gani and Elexson Nillian
Pertanika Journal of Social Science and Humanities, Volume 47, Issue 2, May 2024
DOI: https://doi.org/10.47836/pjtas.47.2.13
Keywords: Coffee bean, Liberica sp., phytochemical composition, proximate, pulp
Published on: 30 May 2024
Arabica, Robusta, and Liberica are the three main coffee species cultivated globally. Liberica coffee is a minor species, accounting for less than 1% of global cultivation. Due to favorable climatic conditions in Malaysia, Liberica coffee dominates coffee production, accounting for 73%, while Robusta makes up the remaining 27%. Nevertheless, the substantial coffee production resulted in approximately 15 million tons of discarded skin and pulp, contributing to environmental pollution. This study was conducted due to insufficient information and research on the proximate composition and phytochemical compounds of the coffee bean and pulp from Liberica sp. This study aims to determine the proximate composition of coffee beans and pulp extracts from Liberica sp. and to identify the phytochemical composition using liquid chromatography-mass spectrometry (LC-MS) analysis. The nutritional values of carbohydrates, protein, crude fiber, crude fat, and ash were obtained using proximate analysis. Coffee beans exhibited the highest value for crude protein (11.96%) and crude fiber (11.83%), whereas coffee pulp has the highest significant value for moisture content (68.81%) and ash (7.31%). LC-MS analysis shows emmotin A and deoxymiroestrol were the major phytochemical compounds. These findings contribute to understanding the nutritional value and phytochemical compounds of coffee beans and pulp from Liberica sp. that may contribute to sustainable waste management and other applications in the food and beverage industry.
Adam, M., Dobiáš, P., Eisner, A., & Ventura, K. (2009). Extraction of antioxidants from plants using ultrasonic methods and their antioxidant capacity. Journal of Separation Science, 32(2), 288-294. https://doi.org/10.1002/jssc.200800543
Al-Dhabi, N. A., Ponmurugan, K., & Jeganathan, P. M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206-213. https://doi.org/10.1016/j.ultsonch.2016.05.005
AOAC INTERNATIONAL. (1990). Official methods of analysis of the Association of Official Analytical Chemists (15 ed.). AOAC INTERNATIONAL.
Asamenew, G., Kim, H.-W., Lee, M.-K., Lee, S.-H., Lee, S., Cha, Y.-S., Lee, S. H., Yoo, S. M., & Kim, J.-B. (2019). Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate. Food Chemistry: X, 2, 100033. https://doi.org/10.1016/j.fochx.2019.100033
Buyong, N. L., & Nillian, E. (2023). Physiochemical properties of Sarawak’s adapted Liberica coffee silver skin utilizing varying solvents. Food Science and Nutrition, 11(10), 6052-6059. https://doi.org/10.1002/fsn3.3541
Campos, G. A. F., Sagu, S. T., Celis, P. S., & Rawel, H. M. (2020). Comparison of batch and continuous wet-processing of coffee: Changes in the main compounds in beans, by-products and wastewater. Foods, 9(8), 1135. https://doi.org/10.3390/foods9081135
Chang, S. K. C. (2003). Protein analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 133-146). Springer. https://doi.org/10.1007/978-1-4419-1478-1_9
Chu, R., Wan, L.-S., Peng, X.-R., Yu, M.-Y., Zhang, Z.-R., Zhou, L., Li, Z.-R., & Qiu, M.-H. (2016). Characterization of new ent-kaurane diterpenoids of Yunnan Arabica coffee beans. Natural Products and Bioprospecting, 6, 217-223. https://doi.org/10.1007/s13659-016-0099-1
Desmawati, D., & Sulastri, D. (2019). Phytoestrogens and their health effect. Open Access Macedonian Journal of Medical Sciences, 7(3), 495-499. https://doi.org/10.3889%2Foamjms.2019.086
Geremu, M., Tola, Y. B., & Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3, 25. https://doi.org/10.1186/s40538-016-0077-1
Harahap, M. R. (2017). Identifikasi daging buah kopi Robusta (Coffea robusta) berasal dari provinsi Aceh [Identification of the pulp of Robusta coffee (Coffea robusta) originating from Aceh province]. Elkawnie: Journal of Islamic Science and Technology, 3(2), 201-210. https://doi.org/10.22373/ekw.v3i2.2770
Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., & Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 221, 969-975. https://doi.org/10.1016/j.foodchem.2016.11.067
Ismail, I., Anuar, M. S., & Shamsudin, R. (2013). Effect on the physico-chemical properties of Liberica green coffee beans under ambient storage. International Food Research Journal, 20(1), 255-264.
Ismail, I., Anuar, M. S., & Shamsudin, R. (2014). Physical properties of Liberica coffee (Coffea liberica) berries and beans. Pertanika Journal of Science and Technology, 22(1), 65-79.
James, C. S. (1995). Analytical chemistry of foods. Blackie Academic & Professional.
Kirk, R. S., & Sawyer, R. (1991). Pearson’s composition and analysis of foods (9th ed.). Longman.
Kovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing, 110, 104-119. https://doi.org/10.1016/j.fbp.2018.05.002
Lončar, M., Jakovljević, M., Šubarić, D., Pavlić, M., Služek, B. V., Cindrić, I., & Molnar, M. (2020). Coumarins in food and methods of their determination. Foods, 9(5), 645. https://doi.org/10.3390/foods9050645
Mohd Jailani, F. N. A., Zaidan, U. H., Abdul Rahim, M. B. H., Abd Gani, S. S., & Halmi, M. I. E. (2020). Evaluation of constituents and physicochemical properties of Malaysian underutilized Ziziphus mauritiana (Bidara) for nutraceutical potential. International Journal of Fruit Science, 20(3), 394-402. https://doi.org/10.1080/15538362.2019.1641458
Murthy, P. S., Manjunatha, M. R., Sulochannama, G., & Naidu, M. M. (2012). Extraction, characterization, and bioactivity of coffee anthocyanins. European Journal of Biological Sciences, 4(1), 13-19.
Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179. https://doi.org/10.1016/j.seppur.2011.09.036
Nabais, J. M. V., Nunes, P., Carrott, P. J., Carrott, M. M. L. R., García, A. M., & Díaz-Díez, M. A. (2008). Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 89(3), 262-268. https://doi.org/10.1016/j.fuproc.2007.11.030
Nillian, E., Ismail, N. S., Boli, M. E., Buyong, N. L., Sng, N. N., Adeni, D. S. A., & Hussini, A. A. S. A. (2020). The feasibility study of physicochemical properties of Sarawak Liberica sp. coffee pulp. Pertanika Journal of Tropical Agricultural Science, 43(4), 477-490. https://doi.org/10.47836/pjtas.43.4.05
Núñez, A. C., Rentería, I. D. C. D., Villagómez, M. Á. L., Elorza, P., Martínez, C. E. M. S., Pulido, S. A. A., & Rojas-Ronquillo, R. (2015). The use of coffee pulp as a potential alternative supplement in ruminant diets. Journal of Agriculture, Science and Technology A, 5(3), 214-217. https://doi.org/10.17265/2161-6256/2015.03.010
Olechno, E., Puścion-Jakubik, A., Socha, K., & Zujko, M. E. (2021). Coffee brews: Are they a source of macroelements in human nutrition? Foods, 10(6), 1328. https://doi.org/10.3390/foods10061328
Oliveira, P. D., Borém, F. M., Isquierdo, E. P., da Silva Giomo, G., de Lima, R. R., & Cardoso, R. A. (2013). Physiological aspects of coffee beans, processed and dried through different methods, associated with sensory quality. Coffee Science, 8(2), 211-220.
Pace, V., Carbone, K., Spirito, F., Iacurto, M., Terzano, M. G., Verna, M., Vincenti, F., & Settineri, D. (2006). The effects of subterranean clover phytoestrogens on sheep growth, reproduction and carcass characteristics. Meat Science, 74(4), 616-622. https://doi.org/10.1016/j.meatsci.2006.05.006
Redfern, J., Kinninmonth, M., Burdass, D., & Verran, J. (2014). Using Soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. Journal of Microbiology and Biology Education, 15(1), 45-46. https://doi.org/10.1128%2Fjmbe.v15i1.656
Rohaya, S., Anwar, S. H., Amhar, A. B., Sutriana, A., & Muzaifa, M. (2023). Antioxidant activity and physicochemical composition of coffee pulp obtained from three coffee varieties in Aceh, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1182, No. 1, p. 012063). IOP Publishing. https://doi.org/10.1088/1755-1315/1182/1/012063
Saleem, H., Sarfraz, M., Khan, K. M., Anwar, M. A., Zengin, G., Ahmad, I., Khan, S.-U., Mahomoodally, M. F., & Ahemad, N. (2020). UHPLC-MS phytochemical profiling, biological propensities, and in-silico studies of Alhagi maurorum roots: A medicinal herb with multifunctional properties. Drug Development and Industrial Pharmacy, 46(5), 861-868. https://doi.org/10.1080/03639045.2020.1762199
Schenker, S., Heinemann, C., Huber, M., Pompizzi, R., Perren, R., & Escher, R. (2002). Impact of roasting conditions on the formation of aroma compounds in coffee beans. Journal of Food Science, 67(1), 60-66. https://doi.org/10.1111/j.1365-2621.2002.tb11359.x
Sena, L. P., Vanderjagt, D. J., Rivera, C., Tsin, A. T. C., Muhamadu, I., Mahamadou, O., Millson, M., Pastuszyn, A., & Glew, R. H. (1998). Analysis of nutritional components of eight famine foods of the Republic of Niger. Plant Foods for Human Nutrition, 52, 17-30. https://doi.org/10.1023/a:1008010009170
Sitohang, A., & Pandiangan, M. (2022). Formulasi limbah kulit Ari kopi pembuatan pellet ikan [Formulation of Ari coffee skin waste for makin fish pellets]. Jurnal Riset Teknologi Pangan Dan Hasil Pertanian (RETIPA), 3(1), 1-12. https://doi.org/10.54367/retipa.v3i1.2240
Srikrishna, D., Godugu, C., & Dubey, P. K. (2018). A review on pharmacological properties of coumarins. Mini Reviews in Medicinal Chemistry, 18(2), 113-141. https://doi.org/10.2174/1389557516666160801094919
Wibowo, N. A., Djufry, F., Syafaruddin., Iflah, T., & Dani. (2022). The quality of Arabica coffee beans evaluation at various processing in Luwu Regency South Sulawesi, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1038, No. 1, p. 012068). IOP Publishing. https://doi.org/10.1088/1755-1315/1038/1/012068
Yulianti, Y., Adawiyah, D. R., Herawati, D., Indrasti, D., & Andarwulan, N. (2023). Detection of markers in green beans and roasted beans of Kalosi-Enrekang Arabica coffee with different postharvest processing using LC-MS/MS. International Journal of Food Science, 2023, 6696808. https://doi.org/10.1155/2023/6696808
Zaidan, U. H., Ab Karim, N., Ahmad, S., Abd Ghani, S. S., & Halmi, M. I. E. (2019). Nutraceutical evaluation and antioxidant potential of red kidney bean (Phaseolus vulgaris) and chickpea (Cicer arietenum) seed coats. Asian Journal of Agriculture and Biology, 7(1), 19-26.
Zainol, M. K., Mohd Subri, I., Zamri, A. I., Mohd Zin, Z., Fisal, A., & Mamat, H. (2020). Antioxidative properties and proximate analysis of spent coffee ground (SCG) extracted using ultrasonic-methanol assisted technique as a potential functional food ingredient. Food Research, 4(3), 636-644. https://doi.org/10.26656/fr.2017.4(3).358
ISSN 0128-7702
e-ISSN 2231-8534
Related Articles