e-ISSN 2231-8534
ISSN 0128-7702
Lim Kah Yen, Tengku Arisyah Tengku Yasim-Anuar, Farhana Aziz Ujang, Hazwani Husin, Hidayah Ariffin, Paridah Md Tahir, Li Xin Ping and Mohd Termizi Yusof
Pertanika Journal of Social Science and Humanities, Volume 31, Issue 5, August 2023
DOI: https://doi.org/10.47836/pjst.31.5.28
Keywords: Adhesive, black liquor, lignin, modification, phenolation, phenol-formaldehyde resin, pulp and paper, sustainability
Published on: 31 July 2023
Despite black liquor’s (BL) renown as a difficult-to-manage contaminant in the pulp and paper industry, BL has been found as a viable alternative material for adhesive formulation due to its high lignin content. Nevertheless, modification is required to enhance lignin’s reactivity, and there is currently a lack of study focusing on this aspect for BL-lignin. This study aims to increase the phenolic hydroxyl content of BL-lignin by phenolation. After being phenolated at lignin to phenol ratio of 1:1, at a temperature of 100°C for 110 minutes, and with the addition of 8% sulfuric acid (H2SO4) as a catalyst, the phenolic hydroxyl content improved by 51.5%. The results of Fourier transform infrared spectroscopy (FTIR), UV/Vis spectrophotometry, proton nuclear magnetic resonance (1H-NMR), thermogravimetry-differential scanning calorimetry (TG-DSC), and its differential curve showed that the structural change in phenolated lignin opened up more active sites, implying that this lignin could be a good substitute for phenol in phenol-formaldehyde resin manufacturing.
Abdelwahab, N. A., & Nassar, M. A. (2011). Preparation , optimisation and characterisation of lignin phenol formaldehyde resin as wood adhesive. Pigment & Resin Technology, 40(3), 169-174. https://doi.org/10.1108/03699421111130432
Ahmadzadeh, A., Zakaria, S., & Rashid, R. (2009). Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin. Industrial Crops and Products, 30(1), 54-58. https://doi.org/10.1016/j.indcrop.2009.01.005
Alonso, M. V., Oliet, M., Rodriguez, F., Gilarranz, M. A., & Rodriguez, J. J. (2005). Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 96(9), 1013-1018. https://doi.org/10.1016/j.biortech.2004.09.009
Chung, H., & Washburn, N. R. (2012). Improved lignin polyurethane properties with lewis acid treatment. American Chemical Society Applied Materials & Interfaces, 4, 2840-2846. https://doi.org/10.1021/am300425x
Funaoka, M., Matsubara, M., Seki, N., & Fukatsu, S. (1995). Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics. Biotechnology and Bioengineering, 46, 545-552. https://doi.org/10.1002/bit.260460607
Gan, L., & Pan, X. (2019). Phenol-Enhanced Depolymerization and Activation of Kraft Lignin in Alkaline Medium. Industrial & Engineering Chemistry Research, 58(19), 7794-7800. https://doi.org/10.1021/acs.iecr.9b01147
Gao, C., Li, M., Zhu, C., Hu, Y., Shen, T., Li, M., Ji, X., Lyu, G., & Zhuang, W. (2021). One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Composites Part B: Engineering, 205, Article 108530. https://doi.org/10.1016/j.compositesb.2020.108530
Garrigues, S. (2019). Paints | organic solvent-based. In P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (3rd ed.) (pp. 110-120). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14227-1
Gerassimidou, S., Velis, C. A., Williams, P. T., & Komilis, D. (2020). Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review. Waste Management and Research, 38(9), 942-965. https://doi.org/10.1177/0734242X20941085
Ghaffar, S. H., & Fan, M. (2013). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57, 264-279. https://doi.org/10.1016/j.biombioe.2013.07.015
Ház, A., Jablonský, M., Šurina, I., Kačík, F., Bubeníková, T., & Ďurkovič, J. (2019). Chemical composition and thermal behavior of kraft lignins. Forests, 10(6), Article 483. https://doi.org/10.3390/F10060483
Hidayati, S., Satyajaya, W., & Fudholi, A. (2020). Lignin isolation from black liquor from oil palm empty fruit bunch using acid. Journal of Materials Research and Technology, 9(5), 11382-11391. https://doi.org/10.1016/j.jmrt.2020.08.023
Hu, L., Pan, H., Zhou, Y., & Zhang, M. (2011). Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources, 6(3), 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3525
Hussin, M. H., Aziz, A. A., Iqbal, A., Ibrahim, M. N. M., & Latif, N. H. A. (2019). Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal. International Journal of Biological Macromolecules, 122, 713-722. https://doi.org/10.1016/j.ijbiomac.2018.11.009
Hussin, M. H., Samad, N. A., Latif, N. H. A., Rozuli, N. A., Yusoff, S. B., Gambier, F., & Brosse, N. (2018). Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. International Journal of Biological Macromolecules, 113, 1266-1272. https://doi.org/10.1016/j.ijbiomac.2018.03.048
Ibrahim, M. N. M., Zakaria, N., Sipaut, C. S., Sulaiman, O., & Hashim, R. (2011). Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydrate Polymers, 86(1), 112-119. https://doi.org/10.1016/j.carbpol.2011.04.018
Ibrahim, V., Mamo, G., Gustafsson, P. J., & Hatti-Kaul, R. (2013). Production and properties of adhesives formulated from laccase modified Kraft lignin. Industrial Crops and Products, 45, 343-348. https://doi.org/10.1016/j.indcrop.2012.12.051
Inwood, J. P.W., Pakzad, L., & Fatehi, P. (2018). Production of sulfur containing kraft lignin products. BioResources, 13(1), 53-70. https://doi.org/10.15376/biores.13.1.53-70
Inwood, J. P. W. (2014). Sulfonation of kraft lignin to water soluble value added products [Doctoral thesis, Lakehead University]. Lakehead University. https://knowledgecommons.lakeheadu.ca/bitstream/2453/573/1/InwoodJ2014m-1a.pdf
Jiang, X., Liu, J., Du, X., Hu, Z., Chang, H.-M., & Jameel, H. (2018). Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chemistry & Engineering, 6(4), 5504-5512. https://doi.org/10.1021/acssuschemeng.8b00369
Jin, Y., Cheng, X., & Zheng, Z. (2010). Preparation and characterization of phenol - formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresource Technology, 101(6), 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085
Kazzaz, A. E., Feizi, Z. H., & Fatehi, P. (2019). Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 21, 5714-5752. https://doi.org/10.1039/c9gc02598g
Lai, Y., Zhang, Z., Huang, G., & Chi, C. (2007). Determination of the content of phenolic hydroxyl groups in lignin and pulp with fc-method. Transactions of China Pulp and Paper, 22(1), 54-58. https://doi.org/10.3321/j.issn:1000-6842.2007.01.014
Laurichesse, S., & Avérous, L. (2014). Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 39(7), 1266-1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004
Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10, 39-48. https://doi.org/10.1023/A:1021070006895
Luo, B., Jia, Z., Jiang, H., Wang, S., & Min, D. (2020). Improving the reactivity of sugarcane bagasse kraft lignin by a combination of fractionation and phenolation for phenol - formaldehyde adhesive applications. Polymer, 12(8), Article 1825. https://doi.org/10.3390/polym12081825
Ma, X., Dai, B., & Yang, X. H. (2007). Recovery of lignin from reed black liquor of paper-making by acidulation method. Technology and Development of Chemical Industry, 36(8), 44-46.
Makulski, W., & Jackowski, K. (2020). 1H, 13C and 29Si magnetic shielding in gaseous and liquid tetramethylsilane. Journal of Magnetic Resonance, 313, Article 106716. https://doi.org/10.1016/j.jmr.2020.106716
Mansouri, N.-E. E., & Salvadó, J. (2006). Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products, 24(1), 8-16. https://doi.org/10.1016/j.indcrop.2005.10.002
Pang, B., Yang, S., Fang, W., Yuan, T.-Q., Argyropoulos, D. S., & Sun, R.-C. (2017). Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Industrial Crops & Products, 108, 316-326. https://doi.org/10.1016/j.indcrop.2017.07.009
Podschun, J., Saake, B., & Lehnen, R. (2015). Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets. European Polymer Journal, 67, 1-11. https://doi.org/10.1016/j.eurpolymj.2015.03.029
Podschun, J., Stucker, A., Saake, B., & Lehnen, R. (2015). Structure − Function relationships in the phenolation of lignins from different sources. ACS Sustainable Chemistry & Engineering, 3(10), 2526-2532. https://doi.org/10.1021/acssuschemeng.5b00705
Pretsch, E., Bühlmann, P., & Badertscher, M. (2020). Structure Determination of Organic Compounds. Springer. https://doi.org/10.1007/978-3-662-62439-5
Qiao, W., Li, S., & Xu, F. (2016). Preparation and characterization of a phenol-formaldehyde resin adhesive obtained from bio-ethanol production residue. Polymers and Polymer Composites, 24(2), 99-105. https://doi.org/10.1177/096739111602400203
Rashid, T., Kait, C. F., & Murugesan, T. (2016). A “Fourier Transformed Infrared” compound study of lignin recovered from a formic acid process. Procedia Engineering, 148, 1312-1319. https://doi.org/10.1016/j.proeng.2016.06.547
Sammons, R. J., Harper, D. P., Labbé, N., Bozell, J. J., Elder, T., & Rials, T. G. (2013). Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources, 8(2), 2752-2767.
Skulcova, A., Majova, V., Kohutova, M., Grosik, M., Sima, J., & Jablonsky, M. (2017). UV/Vis Spectrometry as a quantification tool for lignin solubilized in deep eutectic solvents. BioResources, 12(3), 6713-6722. https://doi.org/10.15376/biores.12.3.6713-6722
Taleb, F., Ammar, M., Mosbah, M. B., Salem, R. B., & Moussaoui, Y. (2020). Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Scientific Reports, 10, Article 11048. https://doi.org/10.1038/s41598-020-68047-6
Thébault, M., Kutuzova, L., Jury, S., Eicher, I., Zikulnig-Rusch, E. M., & Kandelbauer, A. (2020). Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: Molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles. Journal of Renewable Materials, 8(6), 603-630. https://doi.org/10.32604/jrm.2020.09616
Wang, M., Sjöholm, E., & Li, J. (2017). Fast and reliable quantification of lignin reactivity via reaction with dimethylamine and formaldehyde (Mannich reaction). Holzforschung, 71(1), 27-34. https://doi.org/10.1515/hf-2016-0054
Wang, Y., Liu, W., Zhang, L., & Hou, Q. (2019). Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. International Journal of Biological Macromolecules, 134, 20-27. https://doi.org/10.1016/j.ijbiomac.2019.05.013
Yang, C. Y., & Fang, T. J. (2014). Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Bioresource Technology, 164, 198-202. https://doi.org/10.1016/j.biortech.2014.05.004
Yang, S., Wen, J. L., Yuan, T. Q., & Sun, R. C. (2014). Characterization and phenolation of biorefinery technical lignins for lignin-phenol-formaldehyde resin adhesive synthesis. RSC Advances, 4(101), 57996-58004. https://doi.org/10.1039/c4ra09595b
Zhang, F., Jiang, X., Lin, J., Zhao, G., Chang, H.-M, & Jameel, H. (2019). Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New Journal of Chemistry, 43, 2238-2246. https://doi.org/10.1039/c8nj05016c
Zhang, H.-N., Ren, H., & Zhai, H.-M. (2021). Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Industrial Crops & Products, 167, Article 113506. https://doi.org/10.1016/j.indcrop.2021.113506
Zhang, H., Chen, T., Li, Y., Han, Y., Sun, Y., & Sun, G. (2020). Novel lignin-containing high-performance adhesive for extreme environment. International Journal of Biological Macromolecules, 164, 1832-1839. https://doi.org/10.1016/j.ijbiomac.2020.07.307
Zhang, Y., Li, N., Chen, Z., Ding, C., Zheng, Q., Xu, J., & Meng, Q. (2020). Synthesis of high-water-resistance lignin-phenol resin adhesive with furfural as a crosslinking agent. Polymers, 12(12), Article 2805. https://doi.org/10.3390/polym12122805
Zhang, Y., & Lei, Z.-F. (2010). Study on antioxidant activity of lignin from pulping black liquor. Journal of Fudan University (Natural Science), 49(1), 60-65.
Zhen, X., Li, H., Xu, Z., Wang, Q., Zhu, S., Wang, Z., & Yuan, Z. (2021). Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. International Journal of Biological Macromolecules, 182, 276-285. https://doi.org/10.1016/j.ijbiomac.2021.03.203
Zhu, W. (2013). Equilibrium of Lignin Precipitation: The Effects of pH, Temperature, Ion Strength and Wood Origins [Licentiate Thesis]. Chalmers University of Technology, Sweden. https://publications.lib.chalmers.se/records/fulltext/186940/186940.pdf
ISSN 0128-7702
e-ISSN 2231-8534
Related Articles