e-ISSN 2231-8542
ISSN 1511-3701
Aljohani Waad Awdah Saad, Siti Norathirah Mohd Anas, Nor Safiqah Seminin, Putri Nur Suhaina Naim, Dardau Abdulaziz, Rusea Go, Nor Azwady Abdul Aziz, Mona Fatin Syazwanee Mohamed Ghazali and Muskhazli Mustafa
Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 2, March 2023
DOI: https://doi.org/10.47836/pjst.31.2.14
Keywords: Calcite, calcium chloride, permeability, polymorph, unconfined compressive strength, vaterite
Published on: 20 March 2023
This review aims to quantify the impact of calcium chloride in cementation solutions on Microbial Induced Calcite Precipitation (MICP). Specific soil strength properties, such as the Unconfined Compressive Strength (UCS) test, permeability (k) and calcium carbonate content of the soil, form the basis of quantifying the test results. Relevant articles from various online databases such as Scopus, Science Direct, ProQuest Dissertations and Theses Global (PQDT), Mendeley and Google Scholar are obtained with search strings of suitable keywords. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) were used to screen and select related articles based on exclusion and inclusion characteristics. This review shows a positive correlation between calcium concentrations and soil strength properties, where higher concentrations of calcium solutions induce stronger bonding between soil particles due to better calcite precipitation. However, we also note a reversed correlation when the concentration of calcium solutions is higher than 1 M. This review also verifies that the MICP process enhances soil strength using optimum calcium chloride concentration to avoid soil brittleness. This result benefits other fields, such as agricultural and soil engineering.
Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022
Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992-1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666
Al-Thawadi, S., Cord-Ruwisch, R., & Bououdina, M. (2012). Consolidation of sand particles by nanoparticles of calcite after concentrating ureolytic bacteria in situ. International Journal of Green Nanotechnology: Biomedicine, 4(1), 28-36. http://dx.doi.org/10.1080/19430892.2012.654741
Bosak, T., & Newman, D. K. (2005). Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research, 75(2), 190-199. http://dx.doi.org/10.2110/jsr.2005.015
Chahal, N., Rajor, A., & Siddique, R. (2011). Calcium carbonate precipitation by different bacterial strains. African Journal of Biotechnology, 10(42), 8359-8372. https://doi.org/10.5897/AJB11.345
Cheng, L., Shahin, M. A., & Cord-Ruwisch, R. (2014). Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Geotechnique, 64(12), 1010-1013. https://doi.org/10.1680/geot.14.T.025
Choi, S. G., Chu, J., Brown, R. C., Wang, K., & Wen, Z. (2017). Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. ACS Sustainable Chemical and Engineering, 5, 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521
Chunxiang, Q., Jianyun, W., Ruixing, W., & Liang, C. (2009). Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering C, 29(4), 1273-1280. https://doi.org/10.1016/j.msec.2008.10.025
Chuo, S. C., Mohamed, S. F., Setapar, S. H. M., Ahmad, A., Jawaid, M., Wani, W. A., & Ibrahim, M. N. M. (2020). Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials, 13(21), 1-28. https://doi.org/10.3390/ma13214993
Cui, M. J., Zheng, J. J., Chu, J., Wu, C. C., & Lai, H. J. (2021). Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica, 16, 1377-1389. https://doi.org/10.1007/s11440-020-01099-0
Dardau, A. A., Mustafa, M., & Aziz, N. A. A. (2021). Microbial-induced calcite precipitation: A milestone towards soil improvement. Malaysian Applied Biology, 50(1), 11-27. https://doi.org/10.55230/mabjournal.v50i1.9
De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. American Society for Microbiology, 36(2), 99-111. https://doi.org/10.1016/j.ecoleng.2009.03.025
DeJong, J. T., Fritzges, M. B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
Duo, L., Kan-liang, T., Hui-li, Z., Yu-yao, W., Kang-yi, N., & Shi-can, Z. (2018). Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Construction and Building Materials, 172, 251-262. https://doi.org/10.1016/j.conbuildmat.2018.03.255
Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 1-9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379
Ganendra, G., De Muynck, W., Ho, A., Arvaniti, E. C., Hosseinkhani, B., Ramos, J. A., Rahier, H., & Boon, N. (2014). Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP. Applied and Environmental Microbiology, 80, 4659-4667. https://doi.org/10.1128/AEM.01349-14
Gebru, K. A., Kidanemariam, T. G., & Gebretinsae, H. K. (2021). Bio-cement production using microbially induced calcite precipitation (MICP) method: A review. Chemical Engineering Science, 238, Article 116610. https://doi.org/10.1016/j.ces.2021.116610
Golovkina, D. A., Zhurishkina, E. V., Ivanova, L. A., Baranchikov, A. E., Sokolov, A. Y., Bobrov, K. S., Masharsky, A. E., Tsvigun, N. V., Kopitsa, G. P., & Kulminskaya, A. A. (2020). Calcifying bacteria flexibility in induction of CaCO3 mineralization. Life, 10(12), Article 317. https://doi.org/10.3390/life10120317
Hua B., D &ng B., Thornton E. C., Yang J., & Amonette J.E. (2007). Incorporation of chromate into calcium carbonate structure during coprecipitation. Water Air and Soil Pollution, 179, 381-390. https://doi.org/10.1007/s11270-006-9242-7
Kadhim, F. J., & Zheng, J. (2017). Influences of calcium sources and type of sand on microbial carbonate precipitation. International Journal of Advances in Engineering & Technology, 10(1), 20-29.
Koestel, J., Dathe, A., Skaggs, T. H., Klakegg, O., Ahmad, M. A., Babko, M., Gim´enez, D., Farkas, C., Nemes, A., & Jarvis, N. (2018). Estimating the permeability of naturally structured soil from percolation theory and pore space characteristics imaged by Xray. Water Resources Research, 54(11), 9255-9263. https://doi.org/10.1029/2018WR023609
Lapierre, F. M., Schmid, J., Ederer, B., Ihling, N., Büchs, J., & Huber, R. (2020). Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Scientific Reports, 10, Article 22448. https://doi.org/10.1038/s41598-020-79904-9
Liang, S., Chen, J., Niu, J., Gong, X., & Feng, D. (2020). Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources & Geotechnology, 38(4), 393-399. https://doi.org/10.1080/1064119X.2019.1575939
Lu, W., Qian, C., & Wang, R. (2010). Study on soil solidification based on microbiological precipitation of CaCO3. Science China Technological Sciences, 53, 2372-2377. https://doi.org/10.1007/s11431-010-4060-y
Mujah, D., Liang, C., & Shahin, M. A. (2019). Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 31(4), 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660
Nemati, M., Greene, E. A., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925-933. https://doi.org/10.1016/j.procbio.2004.02.019
Ng, W. S., Lee, M. L., Tan, C. K., & Hii, S. L. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17, 718-728. https://doi.org/10.1007/s12205-013-0149-8
Okwadha, G. D. O., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148. https://doi.org/10.1016/j.chemosphere.2010.09.066
Shahrokhi-Shahraki, R., Zomorodian, S. M. A., Niazi, A., & O’Kelly, B. C. (2014). Improving sand with microbial-induced carbonate precipitation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3), 217-230. https://doi.org/10.1680/grim.14.00001
Sheikh, S. A., & Atmapoojya, S. L. (2022). Experimental study on factors affecting the efficiency of microbially induced carbonate precipitation in soil. Materials Today: Proceedings, 60(Part 1), 275-280. https://doi.org/10.1016/j.matpr.2021.12.530
Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089
Velpuri, N. V. P., Yu, X., Lee, H., & Chang, W. (2016). Influence factors for microbial-induced calcite precipitation in sands. In W. C. Cheng & J. Y. Wu (Eds.), Geo-China 2016: Innovative and Sustainable use of Geomaterials and Geosystems (pp. 44-52). ASCE Library. https://doi.org/10.1061/9780784480069.006
Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46(2), 455-464. https://doi.org/10.1590/S1517-838246220140533
Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement (Doctoral dissertation). Murdoch University, Australia. https://researchrepository.murdoch.edu.au/id/eprint/399/2/02Whole.pdf.
Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423. https://doi.org/10.1080/01490450701436505
ISSN 1511-3701
e-ISSN 2231-8542