e-ISSN 2231-8526
ISSN 0128-7680
Sri Utami Lestari, Dyah Roeswitawati, Syafrani, Maftuchah and Indra Purnama
Pertanika Journal of Science & Technology, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.18
Keywords: Azolla microphylla, nitrogen fixation, shading percentage, sustainable cultivation, tropical agriculture, water depth
Published on: 27 August 2024
Azolla microphylla, a rapidly growing aquatic fern with the unique ability to fix atmospheric nitrogen, presents significant potential for sustainable agriculture. Despite its nitrogen-fixing prowess, challenges persist in optimizing biomass production, prompting a detailed exploration of influential factors in this study. This paper addresses the persistent challenge of optimizing nitrogen-rich biomass production in Azolla cultivation. Employing a split-plot experimental design, the study investigates the influential factors of shading percentage (N) and water depth (G) in Azolla growth, systematically ranging from 0% (full sunlight/N1) to 75% (N3) shading percentages and 2.5 cm (G1), 5.0 cm (G2), and 7.5 cm (G3) water depths. In addition to assessing growth and production outcomes, this study explores the nitrogen content in Azolla under three different conditions: fresh, dried, and composted Azolla. Findings unveil the significant influence of shading percentage and water depth on Azolla growth, with the N1G2 treatment identified as the optimal condition for achieving maximum biomass production. Set against the backdrop of tropical agriculture, specifically within the high temperatures in Indonesia, our study underscores the resilience of Azolla to elevated temperatures, highlighting its potential as a nitrogen-fixing agent. Notably, fresh Azolla closely matches urea in nitrogen content, suggesting its potential as an organic fertilizer substitute for urea. This research sheds light on the critical challenges surrounding nitrogen-rich biomass production from fresh Azolla, emphasizing the necessity of temperature resilience and water depth optimization. The insights provided hold significance for tropical agriculture practices seeking to harness the potential of Azolla as a free-air nitrogen fixator.
Abd El-Aal, A. A. M. (2022). Anabaena-azollae, significance and agriculture application: A case study for symbiotic cyanobacterium. In R. P. Singh, K. Bhattacharjee, G. Manchanda, & H. Panosyan (Eds.), Microbial syntrophy-mediated eco-enterprising (pp. 1-14). Academic Press. https://doi.org/10.1016/B978-0-323-99900-7.00006-7
Adabembe, B. A., Fasinmirin, J. T., Olanrewaju, O. O., Dada, A. A., & Faloye, O. T. (2022). Phytoremediation of aquaculture wastewater using Azolla pinnata and evaluation of its suitability for irrigation purpose. Sustainable Water Resources Management, 8, 166. https://doi.org/10.1007/s40899-022-00753-7
Adhikari, K., Bhandari, S., & Acharya, S. (2020). An overview of Azolla in rice production: A review. Reviews in Food and Agriculture, 2(1), 4-8. http://doi.org/10.26480/rfna.01.2021.04.08
Adzman, N., Goh, S. J., Johari, A., Alam, M. N. H. Z., & Kamaruddin, M. J. (2022). Preliminary study on Azolla cultivation and characterization for sustainable biomass source. In Journal of Physics: Conference Series (Vol. 2259, No. 1, p. 012018). IOP Publishing. https://doi.org/10.1088/1742-6596/2259/1/012018
Ahmad, N., & Tariq, H. (2021). Azolla as waste decomposer and bio-fertilizer: A review. Journal of Applied Research in Plant Sciences, 2(1), 108-116. https://doi.org/10.38211/joarps.2021.2.1.14
Ahmad, N., Seung, C. C. F., & Sam, L. M. (2024). Effect of fresh Azolla (Azolla pinnata) on growth and yield of TR8 rice variety under reduced nitrogen rates. Journal of Agrobiotechnology, 15(S1), 69-78. https://doi.org/10.37231/jab.2024.15.S1.375
Akhtar, M., Sarwar, N., Ashraf, A., Ejaz, A., Ali, S., & Rizwan, M. (2021). Beneficial role of Azolla sp. in paddy soils and their use as bioremediators in polluted aqueous environments: Implications and future perspectives. Archives of Agronomy and Soil Science, 67(9), 1242-1255. https://doi.org/10.1080/03650340.2020.1786885
Alam, M. S., Khanam, M., & Rahman, M. M. (2023). Environment-friendly nitrogen management practices in wetland paddy cultivation. Frontiers in Sustainable Food Systems, 7, 1020570. https://doi.org/10.3389/fsufs.2023.1020570
Ali, S., Mishra, P. K., Islam, A., & Alam, N. M. (2016). Simulation of water temperature in a small pond using parametric statistical models: Implications of climate warming. Journal of Environmental Engineering, 142(3), 04015085. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001050
Amit, S., Amit, K., Anoop, P., & Ashok, K. (2016). Azolla - An environment eco-friendly pteridophytic species. European Journal of Biomedical, 3(6), 210-213.
Bao, J., Lv, Y., Qv, M., Li, Z., Li, T., Li, S., & Zhu, L. (2022). Evaluation of key microbial community succession and enzyme activities of nitrogen transformation in pig manure composting process through multi-angle analysis. Bioresource Technology, 362, 127797. https://doi.org/10.1016/j.biortech.2022.127797
Bhattacharya, A. (2022). Effect of low-temperature stress on germination, growth, and phenology of plants: A review. In Physiological processes in plants under low temperature stress (pp. 1-106). Springer. https://doi.org/10.1007/978-981-16-9037-2_1
Borkar, V. H., Dongarwar, L. N., & Meshram, M. P. (2023). Effect of incorporation of Azolla on grain yield of rice (Oryza sativa). Current Advances in Agricultural Sciences, 15(1), 85-88. https://doi.org/10.5958/2394-4471.2023.00015.1
Cannavò, S., Bertoldi, A., Valeri, M. C., Damiani, F., Reale, L., Brilli, F., & Paolocci, F. (2023). Impact of high light intensity and low temperature on the growth and phenylpropanoid profile of Azolla filiculoides. International Journal of Molecular Sciences, 24(10), 8554. https://doi.org/10.3390/ijms24108554
Chupaza, M. H., Park, Y.-R., Kim, S. H., Yang, J. W., Jeong, G.-T., & Kim, S.-K. (2021). Bioethanol Production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 193, 502-514. https://doi.org/10.1007/s12010-020-03437-0
Costarelli, A., Cannavò, S., Cerri, M., Pellegrino, R. M., Reale, L., Paolocci, F., & Pasqualini, S. (2021). Light and temperature shape the phenylpropanoid profile of Azolla filiculoides fronds. Frontiers in Plant Science, 12, 727667. https://doi.org/10.3389/fpls.2021.727667
da Silva, M. E. J., Mathe, L. O. J., van Rooyen, I. L., Brink, H. G., & Nicol, W. (2022). Optimal growth conditions for Azolla pinnata R. Brown: Impacts of light intensity, nitrogen addition, pH control, and humidity. Plants, 11(8), 1048. https://doi.org/10.3390/plants11081048
Devaprakash, M., Thirumalaivasan, R., Sivakumar, N., & Shyamkumar, R. (2024). Cyanobacterial interactions and symbiosis. In A. K. Mishra & S. S. Singh (Eds.), Cyanobacteria: Metabolisms to molecules (pp. 425-489). Academic Press. https://doi.org/10.1016/B978-0-443-13231-5.00004-0
Effendi, I., Pranata, A., & Feliatra. (2019). The effect of sun light intensity on the growth of Azolla microphylla and its symbiont Anabeana azollae in brackish water. In Journal of Physics: Conference Series (Vol. 1351, No. 1, p. 012096). IOP Publishing. https://doi.org/10.1088/1742-6596/1351/1/012096
Hermawan, A., Sulistyani, D. P., & Bakri. (2021). Performance of paddy crop in swampland under organic pellet fertilization from Azolla and vermicompost. Jurnal Ilmiah Pertanian, 17(2), 60-66. https://doi.org/10.31849/jip.v17i2.5807
Hussain, S., Ulhassan, Z., Brestic, M., Zivcak, M., Zhou, W., Allakhverdiev, S. I., Yang, X., Safdar, M. E., Yang, W., & Liu, W. (2021). Photosynthesis research under climate change. Photosynthesis Research, 150, 5-19. https://doi.org/10.1007/s11120-021-00861-z
Jama, A., Widiastuti, D. P., Gafur, S., & Davis, J. G. (2023). Azolla biofertilizer is an effective replacement for urea fertilizer in vegetable crops. Sustainability, 15(7), 6045. https://doi.org/10.3390/su15076045
Kakaeian, A. M., & Mohammadi, G. (2022). Azolla (Azolla pinnata) response to different phosphorus and radiation treatments at two cultivation dates. Agrotechniques in Industrial Crops, 2(1), 42-48. https://doi.org/10.22126/ATIC.2022.7364.1040
Kimani, S. M., Bimantara, P. O., Hattori, S., Tawaraya, K., Sudo, S., & Cheng, W. (2020). Azolla incorporation and dual cropping influences CH4 and N2O emissions from flooded paddy ecosystems. Soil Science and Plant Nutrition, 66(1), 152-162. https://doi.org/10.1080/00380768.2019.1705736
Kimani, S. M., Kanno, T., Tawaraya, K., & Cheng, W. (2020). Floating Azolla cover influences evapotranspiration from flooded water surfaces. Wetlands, 40, 1425-1432. https://doi.org/10.1007/s13157-020-01282-9
Korsa, G., Alemu, D., & Ayele, A. (2024). Azolla plant production and their potential applications. International Journal of Agronomy, 2024, 1716440. https://doi.org/10.1155/2024/1716440
Kumar, G. P., Anu Priya, B., Amala Mary, J., & Sundari, U. S. (2020). Exploring the growth and effect of fresh Azolla filiculoides as a biofertilizer on the vegetative attributes of tomato. International Journal of Recent Scientific Research, 11(8), 39588-39594. https://doi.org/10.24327/ijrsr.2020.1108.5530
Kumar, G., & Chander, H. (2017). A study on the potential of Azolla pinnata as livestock feed supplement for climate change adaptation and mitigation. Asian Journal of Advanced Basic Sciences, 5(2), 65-68.
Lestari, S. U., Mutryarny, E., & Susi, N. (2019). Uji komposisi kimia kompos Azolla microphylla dan pupuk organik cair (POC) Azolla microphylla [Chemical composition test of Azolla microphylla compost and liquid organic fertilizer (POC) Azolla microphylla]. Jurnal Ilmiah Pertanian, 15(2), 121-127. https://doi.org/10.31849/jip.v15i2.2193
Liu, J., & van Iersel, M. W. (2021). Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms. Frontiers in Plant Science, 12, 619987. https://doi.org/10.3389/fpls.2021.619987
Marzouk, S. H., Tindwa, H. J., Amuri, N. A., & Semoka, J. M. (2023). An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production. Heliyon, 9(1), e13040. https://doi.org/10.1016/j.heliyon.2023.e13040
Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., Lawson, T., & Cavanagh, A. P. (2021). The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 72(8), 2822-2844. https://doi.org/10.1093/jxb/erab090
Muñoz, G. R., Kelling, K. A., Rylant, K. E., & Zhu, J. (2008). Field evaluation of nitrogen availability from fresh and composted manure. Journal of Environmental Quality, 37(3), 944-955. https://doi.org/10.2134/jeq2007.0219
Nasir, N. A. N. M., Kamaruddin, S. A., Zakarya, I. A., & Islam, A. K. M. A. (2022). Sustainable alternative animal feeds: Recent advances and future perspective of using Azolla as animal feed in livestock, poultry, and fish nutrition. Sustainable Chemistry and Pharmacy, 25, 100581. https://doi.org/10.1016/j.scp.2021.100581
Pouil, S., Samsudin, R., Slembrouck, J., Sihabuddin, A., Sundari, G., Khazaidan, K., Kristanto, A. H., Pantjara, B., & Caruso, D. (2020). Effects of shading, fertilization, and snail grazing on the productivity of the water fern Azolla filiculoides for tropical freshwater aquaculture. Aquatic Botany, 160, 103150. https://doi.org/10.1016/j.aquabot.2019.103150
Purnama, I., Malhat, F. M., Mutamima, A., Ihsan, F., & Amalia. (2023). A comparative study on pesticide residue profiles in locally grown rice from conventional and sustainable agricultural methods. Jurnal Ilmiah Pertanian, 20(3), 219-231. https://doi.org/10.31849/jip.v20i3.17122
Purnama, I., Trisunaryanti, W., Wijaya, K., Mutamima, A., Oh, W.-C., Boukherroub, R., & Aziz, M. (2024). Multi‐pathways for sustainable fuel production from biomass using zirconium‐based catalysts: A comprehensive review. Energy Technology, 12(2), 2300901. https://doi.org/10.1002/ente.202300901
Roy, D. C., Pakhira, M. C., & Bera, S. (2016). A review on biology, cultivation, and utilization of Azolla. Advances in Life Sciences, 5(1), 11-15.
Sadeghi, R., Zarkami, R., Sabetraftar, K., & Van Damme, P. (2012). Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) at Selkeh Wildlife Refuge, Anzali wetland, Iran. Ecological Modelling, 243, 8-17. https://doi.org/10.1016/j.ecolmodel.2012.06.011
Sarah, L., Sembiring, M., & Hidayat, B. (2023). Media terbaik untuk pertumbuhan jenis Azolla microphylla dan Azolla pinnata [The optimal growth medium for Azolla microphylla and Azolla pinnata species]. Agroland: Jurnal Ilmu-ilmu Pertanian, 30(2), 112-120. https://doi.org/10.22487/agrolandnasional.v30i2.1635
Seleiman, M. F., Elshayb, O. M., Nada, A. M., El-leithy, S. A., Baz, L., Alhammad, B. A., & Mahdi, A. H. (2022). Azolla compost as an approach for enhancing growth, productivity and nutrient uptake of Oryza sativa L. Agronomy, 12(2), 416. https://doi.org/10.3390/agronomy12020416
Shamsudin, R., Azhari, N. A. A., Kasim, S., & Rahmat, M. A. S. (2021). Macro and micro-nutrients of Azolla pinnata as a soilless growth media. Basrah Journal of Agricultural Sciences, 34, 180-189. https://doi.org/10.37077/25200860.2021.34.sp1.18
Ssenku, J. E., Nabyonga, L., Kitalikyawe, J., Ntambi, S., Aguttu, G., & Mustafa, A. S. (2022). Potential of Azolla pinnata R. Br. green manure for boosting soil fertility and yield of terrestrial crops in Uganda: A case study of Eleusine coracana (L.) Gaertn. Journal of Crop Science and Biotechnology, 25, 9-18. https://doi.org/10.1007/s12892-021-00108-2
Timmermans, G. H., Hemming, S., Baeza, E., van Thoor, E. A. J., Schenning, A. P. H. J., & Debije, M. G. (2020). Advanced optical materials for sunlight control in greenhouses. Advanced Optical Materials, 8(18), 2000738. https://doi.org/10.1002/adom.202000738
Ting, J. Y., Kamaruddin, N. A., & Mohamad, S. S. S. (2022). Nutritional evaluation of Azolla pinnata and Azolla microphylla as feed supplements for dairy ruminants. Journal of Agrobiotechnology, 13(1S), 17-23. https://doi.org/10.37231/jab.2022.13.1S.314
Toledo, M., Gutiérrez, M. C., Peña, A., Siles, J. A., & Martín, M. A. (2020). Co-composting of chicken manure, alperujo, olive leaves/pruning, and cereal straw at full-scale: Compost quality assessment and odour emission. Process Safety and Environmental Protection, 139, 362-370. https://doi.org/10.1016/j.psep.2020.04.048
Veerabahu, C. (2015). Role of different fertilizer in the cultivation of Azolla microphylla. International Research Journal of Biological Sciences, 4(5), 1-3.
Wong, J. W. C., Wang, X., & Selvam, A. (2017). Improving compost quality by controlling nitrogen loss during composting. In J. W.-C. Wong, R. D. Tyagi, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: Solid waste management (pp. 59-82). Elsevier. https://doi.org/10.1016/B978-0-444-63664-5.00004-6
Xu, H., Zhu, B., Liu, J., Li, D., Yang, Y., Zhang, K., Jiang, Y., Hu, Y., & Zeng, Z. (2017). Azolla planting reduces methane emission and nitrogen fertilizer application in double rice cropping system in southern China. Agronomy for Sustainable Development, 37, 29. https://doi.org/10.1007/s13593-017-0440-z
Yao, Y., Zhang, M., Tian, Y., Zhao, M., Zeng, K., Zhang, B., Zhao, M., & Yin, B. (2018). Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Research, 216, 158-164. https://doi.org/10.1016/j.fcr.2017.11.020
ISSN 0128-7680
e-ISSN 2231-8526