e-ISSN 2231-8534
ISSN 0128-7702
Norshafira Syazwani Abu Hasan, Shahril Mohamad, Sharifah Fathiyah Sy Mohamad, Mohd Hafiz Arzmi and Nurul Nadia Izzati Supian
Pertanika Journal of Social Science and Humanities, Volume 31, Issue 3, April 2023
DOI: https://doi.org/10.47836/pjst.31.3.03
Keywords: Bacterial cellulose, chitosan, ex-situ method, film composite, oil palm frond juice
Published on: 7 April 2023
The development of alternative food packaging films using bio-based residues is in great demand for replacing petroleum-based packaging materials. However, large-scale application is severely limited by costly production and poor performance. This study investigates the ex-situ modification of bacterial cellulose (BC) produced by Acetobacter xylinum in oil palm fronds juice to obtain BC-Chitosan (BCC) films. FTIR revealed the structure of amide I and II bands, confirming the presence of chitosan in BCC films. The FE-SEM images of BCC films showed the formation of a thick chitosan layer with increasing chitosan incorporated into the BC surface structure. The coated chitosan layer observed improved mechanical properties in BCC films due to the disappearance of empty pores between BC fibers. Increments in chitosan concentration slightly decreased the thermal behavior of BCC. The antimicrobial effects of BCC films were effective against Gram-positive bacteria (Staphylococcus aureus) when the concentration of chitosan incorporated was above 0.6 %w/v. This study reveals the potential of extending the application of BC derived from oil palm frond juice (OPFJ) for developing food packaging materials.
Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 1-14. https://doi.org/10.3389/fsufs.2019.00007
Bandyopadhyay, S., Saha, N., Brodnjak, U. V., & Saha, P. (2018). Bacterial cellulose based greener packaging material: A bioadhesive polymeric film. Materials Research Express, 5(11), Article 115405. https://doi.org/10.1088/2053-1591/aadb01
Buruaga-Ramiro, C., Valenzuela, S. V., Valls, C., Roncero, M. B., Pastor, F. I. J., Díaz, P., & Martinez, J. (2020). Development of an antimicrobial bioactive paper made from bacterial cellulose. International Journal of Biological Macromolecules, 158, 587-594. https://doi.org/10.1016/j.ijbiomac.2020.04.234
Cacicedo, M. L., Pacheco, G., Islan, G. A., Alvarez, V. A., Barud, H. S., & Castro, G. R. (2020). Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. International Journal of Biological Macromolecules, 147, 1136-1145. https://doi.org/10.1016/j.ijbiomac.2019.10.082
Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216, 72-85.
Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S. M., & Dadashi, S. (2014). Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148-154. https://doi.org/10.1016/j.carbpol.2014.03.063
Du, R., Zhao, F., Peng, Q., Zhou, Z., & Han, Y. (2018). Production and characterization of bacterial cellulose produced by gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydrate Polymers, 194, 200-207. https://doi.org/10.1016/j.carbpol.2018.04.041
Dubey, S., Sharma, R. K., Agarwal, P., Singh, J., Sinha, N., & Singh, R. P. (2017). From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. International Journal of Biological Macromolecules, 96, 52-60. https://doi.org/10.1016/j.ijbiomac.2016.12.016
He, F., Yang, H., Zeng, L., Hu, H., & Hu, C. (2020). Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess and Biosystems Engineering, 43, 927-936. https://doi.org/10.1007/s00449-020-02289-6
Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: A review. Cellulose, 26, 2895-2911. https://doi.org/10.1007/s10570-019-02307-1
Jia, Y., Wang, X., Huo, M., Zhai, X., Li, F., & Zhong, C. (2017). Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomaterials and Nanotechnology, 7, 1-8. https://doi.org/10.1177/1847980417707172
Ju, S., Zhang, F., Duan, J., & Jiang, J. (2020). Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Carbohydrate Polymers, 237, Article 116167. https://doi.org/10.1016/j.carbpol.2020.116167
Kim, J., Cai, Z., Lee, H. S., Choi, G. S., Lee, D. H., & Jo, C. (2011). Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. Journal of Polymer Research, 18, 739-744. https://doi.org/10.1007/s10965-010-9470-9
Kongruang, S. (2007). Bacterial cellulose production by acetobacter xylinum strains from agricultural waste products. In W. S. Adney, J. D. McMillan, J. Mielenz, K. T. Klasson (Eds.), Biotechnology for Fuels and Chemicals (pp. 763-774). Springer. https://doi.org/10.1007/978-1-60327-526-2_70
Kuo, C. H., Huang, C. Y., Shieh, C. J., Wang, H. M. D., & Tseng, C. Y. (2019). Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using gluconacetobacter xylinus. Waste and Biomass Valorization, 10, 85-93. https://doi.org/10.1007/s12649-017-0034-7
Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., de Oliveira, D., & Poletto, P. (2021). Production of kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. LWT, 135, Article 110075. https://doi.org/10.1016/j.lwt.2020.110075
Liang, J., Wang, R., & Chen, R. (2019). The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite. Polymers, 11(3), Article 491. https://doi.org/10.3390/polym11030491
Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. (2020). Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007-1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230
Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., & Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94(1), 603-611. https://doi.org/10.1016/j.carbpol.2013.01.076
Malhotra, B., Keshwani, A., & Kharkwal, H. (2015). Antimicrobial food packaging: Potential and pitfalls. Frontiers in Microbiology, 6, Article 611. https://doi.org/10.3389/fmicb.2015.00611
Oliveira, M. A., Gonzaga, M. L. C., Bastos, M. S. R., Magalhães, H. C. R., Benevides, S. D., Furtado, R. F., Zambelli, R. A., & Garruti, D. S. (2020). Packaging with cashew gum/gelatin/essential oil for bread: Release potential of the citral. Food Packaging and Shelf Life, 23, Article 100431. https://doi.org/10.1016/j.fpsl.2019.100431
Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49, 151-159. https://doi.org/10.1016/j.bjm.2017.12.012
Sharma, C., Bhardwaj, N. K., & Pathak, P. (2021). Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 279, Article 123608. https://doi.org/10.1016/j.jclepro.2020.123608
Supian, N. N. I., Zakaria, J., Amin, K. N. M., Mohamad, S., & Sy Mohamad, S. F. (2021). Effect of fermentation period on bacterial cellulose production from oil palm frond (OPF) juice. IOP Conference Series: Materials Science and Engineering, 1092, Article 012048. https://doi.org/10.1088/1757-899X/1092/1/012048
Szymańska, E., & Winnicka, K. (2015). Stability of chitosan-A challenge for pharmaceutical and biomedical applications. Marine Drugs, 13(4), 1819-1846. https://doi.org/10.3390/md13041819
Tanpichai, S., Witayakran, S., Wootthikanokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules, 155, 1510-1519. https://doi.org/10.1016/j.ijbiomac.2019.11.128
Ul-Islam, M., Shah, N., Ha, J. H., & Park, J. K. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean Journal of Chemical Engineering, 28, 1736-1743. https://doi.org/10.1007/s11814-011-0042-4
Wahid, F., Hu, X. H., Chu, L. Q., Jia, S. R., Xie, Y. Y., & Zhong, C. (2019). Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. International Journal of Biological Macromolecules, 122, 380-387. https://doi.org/10.1016/j.ijbiomac.2018.10.105
Yusof, S. J. H. M., Roslan, A. M., Ibrahim, K. N., Abdullah, S. S. S., Zakaria, M. R., Hassan, M. A., & Shirai, Y. (2019). Life cycle assessment for bioethanol production from oil palm frond juice in an oil palm based biorefinery. Sustainability, 11(24), Article 6928. https://doi.org/10.3390/SU11246928
Zahari, M. A. K. M., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y., & Hassan, M. A. (2012). Factors affecting poly(3-hydroxybutyrate) production from oil palm frond juice by cupriavidus necator (CCUG52238 T). Journal of Biomedicine and Biotechnology, 2012, Article 125856. https://doi.org/10.1155/2012/125865
ISSN 0128-7702
e-ISSN 2231-8534
Related Articles