e-ISSN 2231-8526
ISSN 0128-7680
Mohammad Fahrulazri Mohd Jaini, Nurfaten Farhanah Roslan, Mohd Termizi Yusof, Noor Baity Saidi, Norhayati Ramli, Nur Ain Izzati Mohd Zainudin and Amalia Mohd Hashim
Pertanika Journal of Science & Technology, Volume 45, Issue 1, February 2022
DOI: https://doi.org/10.47836/pjtas.45.1.12
Keywords: Antimicrobial activity, bioinoculant, endophytes, lactic acid bacteria, plant growth promotion
Published on: 10 Febuary 2022
Endophytic lactic acid bacteria (LAB) isolated from papaya seeds, including a consortium of two LAB isolates, Weissella cibaria PPKSD19 and Lactococcus lactis subsp. lactis PPSSD39 could previously inhibit papaya dieback disease causative agent, Erwinia mallotivora BT-MARDI in vitro, indicating their potential as biofertilizer. However, further characterizations on other plant growth-promoting (PGP) properties of the LABs are pre-requisite to use in agricultural settings as bio-inoculum. Hence, this study aimed to evaluate PGP potentials further and in vitro antifungal activity of the LABs against various plant pathogens. The LAB isolates were tested positive in indole-3-acetic acid (IAA), siderophore, and ammonia production and could solubilize phosphate. Weissella cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 exhibited the strongest in vitro antifungal activity against Fusarium oxysporum TKA and Curvularia lunata. Inoculum concentration of 1×108 cfu/ml of W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 mixture showed the highest increment in shoot and root dry weight. In conclusion, W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 consortium displayed promising plant probiotic potential. These results highlighted the possibility of the bacterial consortium to be exploited as bioinoculant to promote plant growth and inhibit phytopathogens causing plant diseases.
Abdel-Kader, M. M., El-Mougy, N. S., Aly, M. D. E., Lashin, S. M., & El-Mohamady, R. S. (2012). Soil drench with fungicides alternatives against root rot incidence of some vegetables under greenhouse conditions. International Journal of Agriculture and Forestry, 2(2), 61–69. https://doi.org/10.5923/j.ijaf.20120202.10
Agbaglo, S. Y., Nyaku, S. T., Vigbedor, H. D., & Cornelius, E. W. (2020). Pathogenicity of Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum on growth and yield of two okra varieties cultivated in Ghana. International Journal of Agronomy, 2020, 8824165. https://doi.org/10.1155/2020/8824165
Assamoi, A. A., Krabi, E. R., Ehon, A. F., N`guessan, G. A., Niamké, L. S., & Thonart, P. (2016). Isolation and screening of Weissella strains for their potential use as starter during attiéké production. Biotechnology, Agronomy, Society and Environment, 20(3), 355–362. https://doi.org/10.25518/1780-4507.13117
Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant Soil, 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x
Bashan, Y., Okon, Y., & Henis, Y. (1980). Ammonia causes necrosis in tomato leaves infected with Pseudomonas tomato (Okabe) Alstatt. Physiological Plant Pathology, 17(1), 111–114. https://doi.org/10.1016/0048-4059(80)90012-0
Beneduzi, A., Moreira, F., Costa, P. B., Vargas, L. K., Lisboa, B. B., Favreto, R., Baldani, J. I. & Passaglia, L. M. P. (2013). Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology, 63, 94–104. https://doi.org/10.1016/j.apsoil.2012.08.010
Berger, L. R., Stamford, N. P., Santos, C. E. R. S., Freitas, A. D. S., Franco, L. O., & Stamford, T. C. M. (2013). Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. Journal of Soil Science and Plant Nutrition, 13(3), 592–603. https://doi.org/10.4067/S0718-95162013005000047
Bullerman, L. B., & Tsai, W. J. (1994). Incidence and levels of Fusarium moniliforme, Fusarium proliferatum and fumonisins in corn and corn-based foods and feeds. Journal of Food Protection, 57(6), 541–546. https://doi.org/10.4315/0362-028X-57.6.541
Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50(1-2), 131–149. https://doi.org/10.1016/S0168-1605(99)00082-3
Cappuccino, J. G., & Sherman, N. (1996). Instructor’s guide for microbiology: A laboratory manual. Benjamin-Cummings Publishing Company.
Christensen, G. D., Baldassarri, L., & Simpson, W. A. (1995). [38] Methods for studying microbial colonization of plastics. Methods in Enzymology, 253, 477–500. https://doi.org/10.1016/s0076-6879(95)53040-1
Collavino, M. M., Sansberro, P. A., Mroginski, L. A., & Aguilar, O. M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46, 727–738. https://doi.org/10.1007/s00374-010-0480-x
da Silva, T. F., Vollú, R. E., Jurelevicius, D., Alviano, D. S., Alviano, C. S., Blank, A. F., & Seldin, L. (2013). Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community?. BMC Microbiology, 13, 29. https://doi.org/10.1186/1471-2180-13-29
de Lacerda, J. R. M., da Silva, T. F., Vollú, R. E., Marques, J. M., & Seldin, L. (2016). Generally recognized as safe (GRAS) Lactococcus lactis strains associated with Lippia sidoides Cham. are able to solubilize/mineralize phosphate. SpringerPlus, 5, 828. https://doi.org/10.1186/s40064-016-2596-4
Doumbou, C. L., Salove, M. K. H., Crawford, D. L., & Beaulieu, C. (2001). Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection, 82(3), 85–102. https://doi.org/10.7202/706219ar
Ehmann, A. (1977). The van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography, 132(2), 267–276. https://doi.org/10.1016/S0021-9673(00)89300-0
Enan, G., Abdel-shafi, S., Ouda, S., & Negm, S. (2013). Novel antibacterial activity of Lactococcus lactis subspecies lactis Z11 isolated from Zabady. International Journal of Biomedical Science, 9(3), 174–180.
Fravel, D. R., & Larkin, R. P. (2002). Reduction of fusarium wilt of hydroponically grown basil by Fusarium oxysporum strain CS-20. Crop Protection, 21(7), 539–543. https://doi.org/10.1016/S0261-2194(01)00143-0
Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Academy of Science, Engineering and Technology, 49, 19–24. https://doi.org/10.5281/zenodo.1083385
Giassi, V., Kiritani, C., & Kupper, K. C. (2016). Bacteria as growth-promoting agents for citrus rootstocks. Microbiological Research, 190, 46–54. https://doi.org/10.1016/j.micres.2015.12.006
Gull, M., & Hafeez, F. Y. (2012). Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. African Journal of Microbiology Research, 6(33), 6308-6318. https://doi.org/10.5897/AJMR12.1285
Grönemeyer, J. L., Burbano, C. S., Hurek, T., & Reinhold-Hurek, B. (2012). Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil, 356(1), 67–82. https://doi.org/10.1007/s11104-011-0798-7
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1
Helal, R. B., Hosen, S., & Shamsi, S. (2018). Mycoflora associated with post-harvest disease of papaya (Carica papaya L.) and their pathogenic potentiality. Bangladesh Journal of Botany, 47(3), 389–395. https://doi.org/10.3329/bjb.v47i3.38656
Ho, H. L. (2015). Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). Journal of Food Processing and Technology, 6(4), 1000437. https://doi.org/10.4172/2157-7110.1000437
Jaber, L. R., & Enkerli, J. (2017). Fungal entomopathogens as endophytes: Can they promote plant growth?. Biocontrol Science and Technology, 27(1), 28–41. https://doi.org/10.1080/09583157.2016.1243227
Kamboj, K., Vasquez, A., & Balada-Llasat, J. M. (2015). Identification and significance of Weissella species infections. Frontiers in Microbiology, 6, 1204. https://doi.org/10.3389/fmicb.2015.01204
Kang, M. S., Chung, J., Kim, S. M., Yang, K. H., & Oh, J. S. (2006). Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm. Caries Research, 40(5), 418-425. https://doi.org/10.1159/000094288
Kang, S. M., Radhakrishnan, R., You, Y. H., Khan, A. L., Park, J. M., Lee, S. M., & Lee, I. J. (2015). Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, 65(1), 36–44. https://doi.org/10.1080/09064710.2014.960889
Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57(5), 503–507. https://doi.org/10.1007/s00284-008-9276-8
Khan, M. S., Zaidi, A., & Ahmad, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In M. Khan, A. Zaidi, & J. Musarrat (Eds.), Phosphate solubilizing microorganisms (pp. 31–62). Springer. https://doi.org/10.1007/978-3-319-08216-5_2
Kim, J. D. (2005). Antifungal activity of lactic acid bacteria isolated from Kimchi against Aspergillus fumigatus. Mycobiology, 33(4), 210–214. https://doi.org/10.4489/myco.2005.33.4.210
Liu, T., Xu, S., Liu, L., Zhou, F., Hou, J., & Chen, J. (2011). Cloning and characteristics of Brn1 gene in Curvularia lunata causing leaf spot in maize. European Journal of Plant Pathology, 131, 211–219. https://doi.org/10.1007/s10658-011-9800-8
Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1(2), 142–146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
Lutz, M. P., Michel, V., Martinez, C., & Camps, C. (2012). Lactic acid bacteria as biocontrol agents of soil-borne pathogens. IOBC-WPRS Bulletin, 78, 285–288
Marag, P. S., & Suman, A. (2018). Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research, 214, 101–113. https://doi.org/10.1016/j.micres.2018.05.016
Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014
Mauch, A., Dal Bello, F., Coffey, A., & Arendt, E. K. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141(1–2), 116–121. https://doi.org/10.1016/j.ijfoodmicro.2010.05.002
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649. https://doi.org/10.4067/S0718-95162013005000051
Morales-Cedeño, L. R., del Carmen Orozco-mosqueda, M., Loeza-lara, P. D., Parra-Cota, F. I., de los Santos-villalobos, S., & Santoyo, G. (2020). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiology Research, 242, 126612. https://doi.org/10.1016/j.micres.2020.126612
Nawawi, M. H., Mohamad, R., Tahir, P. M., & Saad, W. Z. (2017). Extracellular xylanopectinolytic enzymes by Bacillus subtilis ADI1 from EFB’s compost. International Scholarly Research Notices, 2017, 7831954. https://doi.org/10.1155/2017/7831954
Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S., & Thonart, P. (2011). Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of Food Science, 76(6), M305–M311. https://doi.org/10.1111/j.1750-3841.2011.02257.x
Nimnoi, P., & Pongslip, N. (2009). Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficus religiosa L., Leucaena leucocephala and Piper sarmentosum Roxb. Research Journal of Agriculture and Biological Sciences, 5(1), 29–41.
Passari, A. K., Mishra, V. K., Gupta, V. K., Yadav, M. K., Saikia, R., & Singh, B. P. (2015). In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLOS One, 10(9), e0139468. https://doi.org/10.1371/journal.pone.0139468
Pham, V. T. K., Rediers, H., Ghequire, M. K. G., Nguyen, H. H., De Mot, R., Vanderleyden, J., & Spaepen, S. (2017). The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology, 199(3), 513–517. https://doi.org/10.1007/s00203-016-1332-3
Procópio, R. E. L., Araújo, W. L., Maccheroni Jr., W., & Azevedo, J. L. (2009). Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genetics and Molecular Research, 8(4), 1408–1422. https://doi.org/10.4238/vol8-4gmr691
Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277–285. https://doi.org/10.4489/MYCO.2009.37.4.277
Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 1785. https://doi.org/10.3389/fmicb.2016.01785
Rzheyskaya, V. S., Teplitskaya, L. M., & Oturina, I. P. (2013). Colonization of rhizoplane of cucumber roots by microorganisms which are components of the microbial preparation “Embiko®”. Regulatory Mechanisms in Biosystems, 4(2), 63–70. https://doi.org/10.15421/021311
Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
Shrestha, A., Kim, B. S., & Park, D. H. (2014). Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology, 24(7), 763–779. https://doi.org/10.1080/09583157.2014.894495
Siddiqui, Z. A. (2005). PGPR: Prospective biocontrol agents of plant pathogens. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 111–142). Springer. https://doi.org/10.1007/1-4020-4152-7_4
Siezen, R. J., Starrenburg, M. J. C., Boekhorst, J., Renckens, B., Molenaar, D., & van Hylckama Vlieg, J. E. (2008). Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche. Applied and Environmental Microbiology, 74(2), 424–436. https://doi.org/10.1128/AEM.01850-07
Singh, A., Kaur, A., Dua, A., & Mahajan, R. (2015). An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes. Enzyme Research, 2015, 725281. https://doi.org/10.1155/2015/725281
Somers, E., Amke, A., Croonenborghs, A., van Overbeek, L. S., & Vanderleyden, J. (2007, August 26-31). Lactic acid bacteria in organic agricultural soils [Poster presentation]. Rhizosphere 2 Conference 2007, Montpellier, France. https://research.wur.nl/en/publications/lactic-acid-bacteria-in-organic-agricultural-soils
Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 36(1), 1–29. https://doi.org/10.1016/S0168-1605(96)01233-0
Strafella, S., Simpson, D. J., Khanghahi, M. Y., De Angelis, M., Gänzle, M., Minervini, F., & Crecchio, C. (2021). Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere. Microorganisms, 9(1), 78. https://doi.org/10.3390/microorganisms9010078
Taha, M. D. M., Jaini, M. F. M., Saidi, N. B., Rahim, R. A., Shah, U. K. M., & Hashim, A. M. (2019). Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLOS One, 14(12), e0224431. https://doi.org/10.1371/journal.pone.0224431
Tann, H., & Soytong, K. (2017). Biological control of brown leaf spot disease caused by Curvularia lunata and field application method on rice variety IR66 in Cambodia. AGRIVITA Journal of Agricultural Science, 39(1), 111–117. https://doi.org/10.17503/agrivita.v39i1.768
Time and Date (n.d.). Weather in Malaysia. Retrieved from 5th April, 2021, from https://www.timeanddate.com/weather/malaysia/
Tiru, M., Muleta, D., Berecha, G., & Adugna, G. (2013). Antagonistic effects of rhizobacteria against coffee wilt disease caused by Gibberella xylarioides. Asian Journal of Plant Pathology, 7(3), 109–122. https://doi.org/10.3923/ajppaj.2013.109.122
Trias, R., Bañeras, L., Montesinos, E., & Badosa, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11(4), 231–236. https://doi.org/10.2436/20.1501.01.66
Valencia-Hernández, L. J., López-López, K., & Serna-Cock, L. (2016). Weissella cibaria fungistatic activity against Fusarium spp. affecting yellow pitahaya. American Journal of Applied Sciences, 13(12), 1354–1364. https://doi.org/10.3844/ajassp.2016.1354.1364
Valerio, F., Favilla, M., De Bellis, P., Sisto, A., de Candia, S., & Lavermicocca, P. (2009). Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Sytematic and Applied Microbiology, 32(6), 438–448. https://doi.org/10.1016/j.syapm.2009.01.004
Viruel, E., Erazzú, L. E., Martínez Calsina, L., Ferrero, M. A., Lucca, M. E., & Siñeriz, F. (2014). Inoculation of maize with phosphate solubilizing bacteria: Effect on plant growth and yield. Journal of Soil Science and Plant Nutrition, 14(4), 819–831. https://doi.org/10.4067/S0718-95162014005000065
Wang, X., Shen, J., & Liao, H. (2010). Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?. Plant Science, 179(4), 302–306. https://doi.org/10.1016/j.plantsci.2010.06.007
Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81(11), 1508–1512. https://doi.org/10.1094/Phyto-81-1508
Zaidi, A. H., Bakkes, P. J., Krom, B. P., van der Mei, H. C., & Driessen, A. J. M. (2011). Cholate-stimulated biofilm formation by Lactococcus lactis cells. Applied and Environmental Microbiology, 77(8), 2602–2610. https://doi.org/10.1128/AEM.01709-10
Zainudin, N. A. I. M., Hamzah, F. A., Kusai, N. A., Zambri, N. S., & Salleh, S. (2017). Characterization and pathogenicity of Fusarium proliferatum and Fusarium verticillioides, causal agents of Fusarium ear rot of corn. Turkish Journal of Biology, 41(1), 220–230. https://doi.org/10.3906/biy-1606-25
Zakaria, L., Chik, M. W., Heng, K. W., & Salleh, B. (2012). Fusarium species associated with fruit rot of banana (Musa spp.), papaya (Carica papaya) and guava (Psidium guajava). Malaysian Journal of Microbiology, 8(2), 127–130.
ISSN 0128-7680
e-ISSN 2231-8526