e-ISSN 2231-8526
ISSN 0128-7680
Abhinav Pathak and Ratnesh Gupta
Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022
DOI: https://doi.org/10.47836/pjst.30.3.15
Keywords: Attenuation factor, damping ratio, Prony algorithm, stability, synthetic signal
Published on: 25 May 2022
Estimating the low-frequency oscillation in an interconnected power system is the most important requirement to keep the power system in a stable operating condition. This research work deals with a hybrid robust and accurate approach using a combination of Estimation of signal parameters via rotational invariant techniques (ESPRIT) and Prony algorithm to extract the low-frequency oscillatory modes present in the power system. The observation inspires the hybrid method that the true modes of the signal are present in any signal processing technique (for example, Prony algorithm) along with other fictitious modes regardless of the order of the power system. Moreover, this research obtained true modes by calculating Euclidean distance and applying the threshold value concept. The proposed technique is tested with different noise conditions and varying sampling rates of Phasor Measurement Unit (PMU) to check the proposed hybrid technique’s robustness compared to Prony and the multiple ESPRIT method. Finally, the proposed method is applied to the real signal obtained from the Western Electricity Coordinating Council (WECC) network, and it estimates accurate and precise parameters compared to other methods. The accuracy for estimation of frequency and attenuation factor is calculated for the three-mode synthetic signal at a noise level of 10dB by the hybrid algorithm, multiple ESPRIT, and Prony algorithm, which shows that hybrid algorithm has minimum percentage error. Thus, the proposed hybrid algorithm accurately estimates the parameters of low-frequency oscillation as compared to other existing methods without involving any fictitious modes.
Amono, M., Watanabe, M., & Banjo, M. (1999). Self-testing and self-tuning of power system stabilizers using Prony analysis. In IEEE Power Engineering Society. Winter Meeting (Cat. No.99 CH36233) (Vol 1, pp. 655-660). IEEE Publishing. https://doi.org/10.1109/PESW.1999.747533
Avdakovic, S., Nuhanovic, A., Kusljugic, M., & Music, M. (2012). Wavelet transform applications in power system dynamics. Electric Power Systems Research, 83, 237-245. https://doi.org/https://doi.org/10.1016/j.epsr.2010.11.031
Browne, T. J., Vittal, V., Heydt, G. T., & Messina, A. R. (2008). A comparative assessment of two techniques for modal identification from power system measurements. In IEEE Transactions on Power Systems, (Vol. 23, pp. 1408-1415). IEEE Publishing. https://doi.org/10.1109/TPWRS.2008.926720
Girgis, A. A., & Ham, F. M. (1980). A quantitative study of pitfalls in the FFT. In IEEE Transactions on Aerospace and Electronic Systems, (Vol. 4, pp. 434-439). IEEE Publishing. https://doi.org/10.1109/TAES.1980.308971
Glickman, M., O’Shea, P., & Ledwich, G. (2007). Estimation of modal damping in power networks. In IEEE Transactions on Power Systems, (Vol. 22, pp. 1340-350). IEEE Publishing. https://doi.org/10.1109/TPWRS.2007.901122
Grant, L. L., & Crow, M. L. (2011). Comparison of matrix pencil and prony methods for power system modal analysis of noisy signals. In 2011 North American Power Symposium (pp.1-7). IEEE Publishing. https://doi.org/10.1109/NAPS.2011.6024892
Hauer, J. F. (1991). Application of Prony analysis to the determination of modal content and equivalent models for measured power system response. In IEEE Transactions on Power Systems, (Vol. 6, pp.1062-1068). IEEE Publishing. https://doi.org/10.1109/59.119247
Hauer, J. F., Demeure, C. J., & Scharf, L. L. (1990). Initial results in Prony analysis of power system response signals. In IEEE Transactions on Power Systems, (Vol. 5, pp. 80-89). IEEE Publishing. https://doi.org/10.1109/59.49090
Hua, Y., & Sarkar, T. K. (1990). Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. In IEEE Transactions on Acoustics, Speech, and Signal Processing, (Vol. 38, pp. 814-824). IEEE Publishing. https://doi.org/10.1109/29.56027
Kang, P., & Ledwich, G. (1999). Estimating power system modal parameters using wavelets. ISSPA ’99. Proceedings of the Fifth International Symposium on Signal Processing and Its Applications (IEEE Cat. No.99EX359) (Vol. 2, pp. 563-566). IEEE Publishing. https://doi.org/10.1109/ISSPA.1999.815735
Korba, P., Larsson, M., & Rehtanz, C. (2003). Detection of oscillations in power systems using Kalman filtering techniques. In Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003 (Vol.1, pp. 183-188). IEEE Publishing. https://doi.org/10.1109/CCA.2003.1223290
Kundur, P. (1994). Power system stability and control. Tata Mc-Graw Hill Co.
Laila, D. S., Messina, A. R., & Pal, B. C. (2009). A refined Hilbert-Huang transform with applications to inter-area oscillation monitoring. In IEEE Transactions on Power Systems, (pp. 610-620). IEEE Publishing. https://doi.org/10.1109/PES.2009.5275975
Philip, J. G., & Jain, T. (2018a). Analysis of low frequency oscillations in power system using EMO ESPRIT. International Journal of Electrical Power & Energy Systems, 95, 499-506. https://doi.org/10.1016/j.ijepes.2017.08.037
Philip, J. G., & Jain, T. (2018b). Estimation of modal parameters of low frequency oscillations in power system using Hankels total least square method. In 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), (pp. 764-769). IEEE Publishing. https://doi.org/10.1109/ISGT-Asia.2018.8467979
Pierre, J. W., Trudnowski, D. J., & Donnelly, M. K. (1997). Initial results in electromechanical mode identification from ambient data. In IEEE Transactions on Power Systems (Vol. 12, pp. 1245-1251). IEEE Publishing. https://doi.org/10.1109/59.630467
Qi, L., Qian, L., Woodruff, S., & Cartes, D. (2007). Prony analysis for power system transient harmonics. EURASIP Journal on Advances in Signal Processing, 2007, Article 48406. https://doi.org/10.1155/2007/48406
Rai, S., Tripathy, P., & Nayak, S. K. (2014). A robust TLS-ESPIRIT method using covariance approach for identification of low-frequency oscillatory mode in power systems. In 2014 Eighteenth National Power Systems Conference (NPSC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/NPSC.2014.7103887
Rai, S., Lalani, D., Nayak, S. K. K., Jacob, T., & Tripathy, P. (2016). Estimation of low-frequency modes in power system using robust modified Prony. IET Generation, Transmission & Distribution, 10(6), 1401-1409.
Rueda, J. L., Juarez, C. A., & Erlich, I. (2011). Wavelet-based analysis of power system low-frequency electromechanical oscillations. In IEEE Transactions on Power Systems (Vol. 26, pp. 1733-1743). IEEE Publishing. https://doi.org/10.1109/TPWRS.2010.2104164
Trentini, R., Kutzner, R., Hofmann, L., Oliveira, J. de, & Nied, A. (2019). On the electromechanical energy approach: a novel modeling method for power systems stability studies. In IEEE Transactions on Power Systems (Vol. 34, pp. 1771-1779). IEEE Publishing. https://doi.org/10.1109/TPWRS.2018.2887001
Tripathy, P., Srivastava, S. C., & Singh, S. N. (2011). A modified TLS-ESPRIT-based method for low-frequency mode identification in power systems utilizing synchrophasor measurements. In IEEE Transactions on Power Systems (Vol. 26, pp. 719-727). IEEE Publishing. https://doi.org/10.1109/TPWRS.2010.2055901
Trudnowski, D. I. (1994). Order reduction of large-scale linear oscillatory system models. In IEEE Transactions on Power Systems (Vol. 9, pp. 451-458). IEEE Publishing. https://doi.org/10.1109/59.317578
Trudnowski, D. J., Johnson, J. M., & Hauer, J. F. (1999). Making Prony analysis more accurate using multiple signals. In IEEE Transactions on Power Systems (Vol. 14, pp. 226-231). IEEE Publishing. https://doi.org/10.1109/59.744537
Wadduwage, D. P., Annakkage, U. D., & Narendra, K. (2015). Identification of dominant low-frequency modes in ring-down oscillations using multiple Prony models. IET Generation, Transmission & Distribution, 9(15), 2206-2214.
Wang, L., & Semlyen, A. (1990). Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems. IEEE Transactions on Power Systems (Vol. 5, pp. 635-642). IEEE Publishing. https://doi.org/10.1109/59.54575
Wang, X., Tang, F., Wang, X., & Zhang, P. (2014). Estimation of electromechanical modes under ambient condition via random decrement technique and TLS-ESPRIT algorithm. In 2014 International Conference on Power System Technology (pp. 588-593). IEEE Publishing. https://doi.org/10.1109/POWERCON.2014.6993775
Wies, R. W., Pierre, J. W., & Trudnowski, D. J. (2003). Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems. IEEE Transactions on Power Systems (Vol. 18, pp. 167-173). IEEE Publishing. https://doi.org/10.1109/TPWRS.2002.807116
Xie, X., Zhang, S., Xiao, J., Wu, J., & Pu, Y. (2005). Small signal stability assessment with online eigenvalue identification based on wide-area measurement system. 2005 IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, (pp 1-5). IEEE Publishing. https://doi.org/10.1109/TDC.2005.1546826
Zhang, S., Xie, X., & Wu, J. (2008). WAMS-based detection and early-warning of low-frequency oscillations in large-scale power systems. Electric Power Systems Research, 78(5), 897-906. https://doi.org/10.1016/J.EPSR.2007.06.008
Zhou, N., Huang, Z., Tuffner, F., Pierre, J., & Jin, S. (2010). Automatic implementation of Prony analysis for electromechanical mode identification from phasor measurements. IEEE PES General Meeting (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/PES.2010.5590169
Zhou, N., Trudnowski, D. J., Pierre, J. W., & Mittelstadt, W. A. (2008). Electromechanical mode online estimation using regularized robust RLS methods. In IEEE Transactions on Power Systems (Vol. 23, pp. 1670-1680). IEEE Publishing. https://doi.org/10.1109/TPWRS.2008.2002173
ISSN 0128-7680
e-ISSN 2231-8526