PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (2) Apr. 2022 / JST-2713-2021

 

Numerical Simulation of Thermophysical Properties and Heat Transfer Characteristics of Al2O3/CuO Nanofluid with Water/ Ethylene Glycol as Coolant in a Flat Tube of Car Radiator

Aisyah Maisarah Epandi, Alhassan Salami Tijani, Sajith Thottathil Abdulrahman, Jeeventh Kubenthiran and Ibrahim Kolawole Muritala

Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022

DOI: https://doi.org/10.47836/pjst.30.2.01

Keywords: Car radiator, computational Fluid Dynamic (CFD), nanofluid

Published on: 1 April 2022

Thermal energy management in the automobile industry has been a growing challenge to ensure effective engine cooling and increase performance. The objective of this study is to investigate the heat transfer characteristics of nanofluids with different concentrations. The study focuses on the effect of thermophysical properties such as density, viscosity, and thermal conductivity on the thermal performance of the flat tube. Al2O3 and CuO nanoparticles concentrations of 0.05 to 0.3 per cent by volume were added into the mixture of the base fluid. CATIA V5 was used to design the flat tube, and the model was further simulated using ANSYS Fluent, a computational fluid dynamics (CFD) software. The base fluid consisting of 20% ethylene glycol and 80% water was observed to have a thermal conductivity of 0.415 W/m.K. The thermal conductivity, however, increases with the addition of 0.3% volume concentration of Al2O3 and CuO nanofluid, which are 0.9285 W/m.K and 0.9042 W/m.K, respectively. Under the same operating condition, the Nusselt number was observed to increase from 94.514 for the base fluid to 101.36 and 130.46 for both Al2O3 and CuO nanofluid, respectively. It can thus be concluded that CuO with a 0.3% concentration has the highest heat transfer rate compared to others. The heat transfer coefficient was recorded at 22052.200 W/m2 K, and the thermal conductivity obtained was 0.9042 W/mK, Nusselt number was 130.459, and the rate of heat transfer was at 66.71 W. There was a 10% increase in heat transfer coefficient at 0.3% nanofluid concentration when compared to 0.05%.

  • Ahmadi, M. H., Ghazvini, M., Maddah, H., Kahani, M., Pourfarhang, S., Pourfarhang, A., & Heris, S. Z. (2020). Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm. Physica A: Statistical Mechanics and Its Applications, 546, Article 124008. https://doi.org/10.1016/j.physa.2019.124008

  • Ahmed, S. A., Ozkaymak, M., Sözen, A., Menlik, T., & Fahed, A. (2018). Improving car radiator performance by using TiO2-water nanofluid. Engineering Science and Technology, International Journal, 21(5), 996-1005. https://doi.org/10.1016/j.jestch.2018.07.008

  • Ahmed, W., Chowdhury, Z. Z., Kazi, S. N., Johan, M. R., Abdelrazek, A. H., Fayaz, H., Badruddin, I. A., Mujtaba, M. A., Soudagar, M. E. M., Akram, N., Mehmood, S., Ahmad, M. S., Kamangar, S., & Khan, T. M. Y. (2021). Experimental evaluation and numerical verification of enhanced heat transportation by using ultrasonic assisted nanofluids in a closed horizontal circular passage. Case Studies in Thermal Engineering, 26, Article 101026. https://doi.org/10.1016/j.csite.2021.101026

  • Almasri, R. A., Abu-Hamdeh, N. H., Esmaeil, K. K., & Suyambazhahan, S. (2022). Thermal solar sorption cooling systems, a review of principle, technology, and applications. Alexandria Engineering Journal, 61(1), 367-402. https://doi.org/10.1016/j.aej.2021.06.005

  • Alsabery, A. I., Hajjar, A., Sheremet, M. A., Ghalambaz, M., & Hashim, I. (2021). Impact of particles tracking model of nanofluid on forced convection heat transfer within a wavy horizontal channel. International Communications in Heat and Mass Transfer, 122, Article 105176. https://doi.org/10.1016/j.icheatmasstransfer.2021.105176

  • ANSYS. (2013). ANSYS fluent theory guide. ANSYS Inc.

  • Awais, M., Ullah, N., Ahmad, J., Sikandar, F., Ehsan, M. M., Salehin, S., & Bhuiyan, A. A. (2021). Heat transfer and pressure drop performance of Nanofluid: A state-of- the-art review. International Journal of Thermofluids, 9, Article 100065. https://doi.org/10.1016/j.ijft.2021.100065

  • Babar, H., & Ali, H. M. (2019). Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. Journal of Molecular Liquids, 281, 598-633. https://doi.org/10.1016/j.molliq.2019.02.102

  • Chompookham, T., Chingtuaythong, W., & Chokphoemphun, S. (2022). Influence of a novel serrated wire coil insert on thermal characteristics and air flow behavior in a tubular heat exchanger. International Journal of Thermal Sciences, 171(January 2021), Article 107184. https://doi.org/10.1016/j.ijthermalsci.2021.107184

  • Delavari, V., & Hashemabadi, S. H. (2014). CFD simulation of heat transfer enhancement of Al2O 3/water and Al2O3/ethylene glycol nanofluids in a car radiator. Applied Thermal Engineering, 73(1), 380-390. https://doi.org/10.1016/j.applthermaleng.2014.07.061

  • Devireddy, S., Mekala, C. S. R., & Veeredhi, V. R. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78, 121-126. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002

  • Elsaid, A. M. (2019). Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 108, Article 104263. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.009

  • Esfe, M. H., Raki, H. R., Emami, M. R. S., & Afrand, M. (2019). Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technology, 342, 808-816. https://doi.org/10.1016/j.powtec.2018.10.032

  • Guo, W., Li, G., Zheng, Y., & Dong, C. (2018). Laminar convection heat transfer and flow performance of Al2O3-water nanofluids in a multichannel-flat aluminum tube. Chemical Engineering Research and Design, 133(2004), 255-263. https://doi.org/10.1016/j.cherd.2018.03.009

  • Hamilton, R. L. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1(3), 187-191. https://doi.org/10.1021/i160003a005

  • Hayat, T., & Nadeem, S. (2017). Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317-2324. https://doi.org/10.1016/j.rinp.2017.06.034

  • Hong, W. X., Sidik, N. C., & Beriache, M. (2018). Heat transfer performance of hybrid nanofluid as nanocoolant in automobile radiator system. Journal of Advanced Research Design, 51, 14-25.

  • Huminic, G., & Huminic, A. (2013). Numerical analysis of laminar flow heat transfer of nanofluids in a flattened tube. International Communications in Heat and Mass Transfer, 44, 52-57. https://doi.org/10.1016/j.icheatmasstransfer.2013.03.003

  • Huminic, G., & Huminic, A. (2018). The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. International Journal of Heat and Mass Transfer, 119, 813-827. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.155

  • Ibrahim, I. N., Sazali, N., Jamaludin, A. S., Ramasamy, D., Soffie, S. M., & Othman, M. H. D. (2019). A review on vehicle radiator using various coolants. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 59(2), 330-337.

  • Kannaiyan, S., Boobalan, C., Umasankaran, A., Ravirajan, A., Sathyan, S., & Thomas, T. (2017). Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. Journal of Molecular Liquids, 244, 469-477. https://doi.org/10.1016/j.molliq.2017.09.035

  • Karimi, A., & Afrand, M. (2018). Numerical study on thermal performance of an air-cooled heat exchanger: Effects of hybrid nanofluid, pipe arrangement and cross section. Energy Conversion and Management, 164(March), 615-628. https://doi.org/10.1016/j.enconman.2018.03.038

  • Kaska, S. A., Khalefa, R. A., & Hussein, A. M. (2019). Hybrid nanofluid to enhance heat transfer under turbulent flow in a flat tube. Case Studies in Thermal Engineering, 13(December 2018), 4-13. https://doi.org/10.1016/j.csite.2019.100398

  • Kole, M., & Dey, T. K. (2010). Viscosity of alumina nanoparticles dispersed in car engine coolant. Experimental Thermal and Fluid Science, 34(6), 677-683. https://doi.org/10.1016/j.expthermflusci.2009.12.009

  • Kumar, A., Hassan, M. A., & Chand, P. (2020). Heat transport in nanofluid coolant car radiator with louvered fins. Powder Technology, 376, 631-642. https://doi.org/10.1016/j.powtec.2020.08.047

  • Nabil, M. F., Azmi, W. H., Hamid, K. A., Zawawi, N. N. M., Priyandoko, G., & Mamat, R. (2017). Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: A comprehensive review on performance. International Communications in Heat and Mass Transfer, 83, 30-39. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.008

  • Naraki, M., Peyghambarzadeh, S. M., Hashemabadi, S. H., & Vermahmoudi, Y. (2013). Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. International Journal of Thermal Sciences, 66, 82-90. https://doi.org/10.1016/j.ijthermalsci.2012.11.013

  • Okonkwo, E. C., Wole-Osho, I., Kavaz, D., & Abid, M. (2019). Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids. Journal of Molecular Liquids, 292, Article 111377. https://doi.org/10.1016/j.molliq.2019.111377

  • Oliveira, G. A., Contreras, E. M. C., & Bandarra Filho, E. P. (2017). Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator. Applied Thermal Engineering, 111, 1450-1456. https://doi.org/10.1016/j.applthermaleng.2016.05.086

  • Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-170. https://doi.org/10.1080/08916159808946559

  • Pak, B. C., & Cho, Y. I. (2013). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide. Experimental Heat Transfer : A Journal of , Thermal Energy Transport , Storage , and Conversion, January, 2013, 37-41.

  • Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., & Jamnani, M. S. (2011). Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communications in Heat and Mass Transfer, 38(9), 1283-1290. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001

  • Plant, R. D., & Saghir, M. Z. (2021). Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. International Journal of Thermofluids, 9, 100055. https://doi.org/10.1016/j.ijft.2020.100055

  • Soylu, S. K., Atmaca, İ., Asiltürk, M., & Doğan, A. (2019). Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Applied Thermal Engineering, 157, Article 113743. https://doi.org/10.1016/j.applthermaleng.2019.113743

  • Said, Z., Assad, M. E. H., Hachicha, A. A., Bellos, E., Abdelkareem, M. A., Alazaizeh, D. Z., & Yousef, B. A. (2019). Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 112, 183-194. https://doi.org/10.1016/j.rser.2019.05.052

  • Sajid, M. U., & Ali, H. M. (2019). Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews, 103, 556-592. https://doi.org/10.1016/j.rser.2018.12.057

  • Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Samykano, M., Harun, W. S. W., Najafi, M., & Mazlan, M. (2021). A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties. Sustainable Energy Technologies and Assessments, 44, Article 101058.

  • Soltanimehr, M., & Afrand, M. (2015). Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Applied Thermal Engineering, 105, 716-723. https://doi.org/10.1016/j.applthermaleng.2016.03.089

  • Sundar, L. S., Singh, M. K., & Sousa, A. C. M. (2014a). Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73-83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012

  • Sundar, L. S., Ramana, E. V., Singh, M. K., & Sousa, A. C. (2014b). Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. International Communications in Heat and Mass Transfer, 56, 86-95. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009

  • Tijani, A. S., & Sudirman, A. S. (2018). Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. International Journal of Heat and Mass Transfer, 118, 48-57. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.083

  • Tsai, T. H., & Chein, R. (2007). Performance analysis of nanofluid-cooled microchannel heat sinks. International Journal of Heat and Fluid Flow, 28(5), 1013-1026. https://doi.org/10.1016/j.ijheatfluidflow.2007.01.007

  • Vajjha, R. S., Das, D. K., & Ray, D. R. (2015). Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. International Journal of Heat and Mass Transfer, 80, 353-367. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.018

  • Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

  • Zaidan, M. H., Alkumait, A. A. R., & Ibrahim, T. K. (2018). Assessment of heat transfer and fluid flow characteristics within finned flat tube. Case Studies in Thermal Engineering, 12(July), 557-562. https://doi.org/10.1016/j.csite.2018.07.006

  • Zainal, S., Tan, C., Sian, C. J., & Siang, T. J. (2016). ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular pipe. Journal of Advanced Research in Applied Mechanics, 23(1), 20-35.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2713-2021

Download Full Article PDF

Share this article

Recent Articles