e-ISSN 2231-8526
ISSN 0128-7680
Aisyah Maisarah Epandi, Alhassan Salami Tijani, Sajith Thottathil Abdulrahman, Jeeventh Kubenthiran and Ibrahim Kolawole Muritala
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.01
Keywords: Car radiator, computational Fluid Dynamic (CFD), nanofluid
Published on: 1 April 2022
Thermal energy management in the automobile industry has been a growing challenge to ensure effective engine cooling and increase performance. The objective of this study is to investigate the heat transfer characteristics of nanofluids with different concentrations. The study focuses on the effect of thermophysical properties such as density, viscosity, and thermal conductivity on the thermal performance of the flat tube. Al2O3 and CuO nanoparticles concentrations of 0.05 to 0.3 per cent by volume were added into the mixture of the base fluid. CATIA V5 was used to design the flat tube, and the model was further simulated using ANSYS Fluent, a computational fluid dynamics (CFD) software. The base fluid consisting of 20% ethylene glycol and 80% water was observed to have a thermal conductivity of 0.415 W/m.K. The thermal conductivity, however, increases with the addition of 0.3% volume concentration of Al2O3 and CuO nanofluid, which are 0.9285 W/m.K and 0.9042 W/m.K, respectively. Under the same operating condition, the Nusselt number was observed to increase from 94.514 for the base fluid to 101.36 and 130.46 for both Al2O3 and CuO nanofluid, respectively. It can thus be concluded that CuO with a 0.3% concentration has the highest heat transfer rate compared to others. The heat transfer coefficient was recorded at 22052.200 W/m2 K, and the thermal conductivity obtained was 0.9042 W/mK, Nusselt number was 130.459, and the rate of heat transfer was at 66.71 W. There was a 10% increase in heat transfer coefficient at 0.3% nanofluid concentration when compared to 0.05%.
Ahmadi, M. H., Ghazvini, M., Maddah, H., Kahani, M., Pourfarhang, S., Pourfarhang, A., & Heris, S. Z. (2020). Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm. Physica A: Statistical Mechanics and Its Applications, 546, Article 124008. https://doi.org/10.1016/j.physa.2019.124008
Ahmed, S. A., Ozkaymak, M., Sözen, A., Menlik, T., & Fahed, A. (2018). Improving car radiator performance by using TiO2-water nanofluid. Engineering Science and Technology, International Journal, 21(5), 996-1005. https://doi.org/10.1016/j.jestch.2018.07.008
Ahmed, W., Chowdhury, Z. Z., Kazi, S. N., Johan, M. R., Abdelrazek, A. H., Fayaz, H., Badruddin, I. A., Mujtaba, M. A., Soudagar, M. E. M., Akram, N., Mehmood, S., Ahmad, M. S., Kamangar, S., & Khan, T. M. Y. (2021). Experimental evaluation and numerical verification of enhanced heat transportation by using ultrasonic assisted nanofluids in a closed horizontal circular passage. Case Studies in Thermal Engineering, 26, Article 101026. https://doi.org/10.1016/j.csite.2021.101026
Almasri, R. A., Abu-Hamdeh, N. H., Esmaeil, K. K., & Suyambazhahan, S. (2022). Thermal solar sorption cooling systems, a review of principle, technology, and applications. Alexandria Engineering Journal, 61(1), 367-402. https://doi.org/10.1016/j.aej.2021.06.005
Alsabery, A. I., Hajjar, A., Sheremet, M. A., Ghalambaz, M., & Hashim, I. (2021). Impact of particles tracking model of nanofluid on forced convection heat transfer within a wavy horizontal channel. International Communications in Heat and Mass Transfer, 122, Article 105176. https://doi.org/10.1016/j.icheatmasstransfer.2021.105176
ANSYS. (2013). ANSYS fluent theory guide. ANSYS Inc.
Awais, M., Ullah, N., Ahmad, J., Sikandar, F., Ehsan, M. M., Salehin, S., & Bhuiyan, A. A. (2021). Heat transfer and pressure drop performance of Nanofluid: A state-of- the-art review. International Journal of Thermofluids, 9, Article 100065. https://doi.org/10.1016/j.ijft.2021.100065
Babar, H., & Ali, H. M. (2019). Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. Journal of Molecular Liquids, 281, 598-633. https://doi.org/10.1016/j.molliq.2019.02.102
Chompookham, T., Chingtuaythong, W., & Chokphoemphun, S. (2022). Influence of a novel serrated wire coil insert on thermal characteristics and air flow behavior in a tubular heat exchanger. International Journal of Thermal Sciences, 171(January 2021), Article 107184. https://doi.org/10.1016/j.ijthermalsci.2021.107184
Delavari, V., & Hashemabadi, S. H. (2014). CFD simulation of heat transfer enhancement of Al2O 3/water and Al2O3/ethylene glycol nanofluids in a car radiator. Applied Thermal Engineering, 73(1), 380-390. https://doi.org/10.1016/j.applthermaleng.2014.07.061
Devireddy, S., Mekala, C. S. R., & Veeredhi, V. R. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78, 121-126. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002
Elsaid, A. M. (2019). Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 108, Article 104263. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.009
Esfe, M. H., Raki, H. R., Emami, M. R. S., & Afrand, M. (2019). Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technology, 342, 808-816. https://doi.org/10.1016/j.powtec.2018.10.032
Guo, W., Li, G., Zheng, Y., & Dong, C. (2018). Laminar convection heat transfer and flow performance of Al2O3-water nanofluids in a multichannel-flat aluminum tube. Chemical Engineering Research and Design, 133(2004), 255-263. https://doi.org/10.1016/j.cherd.2018.03.009
Hamilton, R. L. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1(3), 187-191. https://doi.org/10.1021/i160003a005
Hayat, T., & Nadeem, S. (2017). Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317-2324. https://doi.org/10.1016/j.rinp.2017.06.034
Hong, W. X., Sidik, N. C., & Beriache, M. (2018). Heat transfer performance of hybrid nanofluid as nanocoolant in automobile radiator system. Journal of Advanced Research Design, 51, 14-25.
Huminic, G., & Huminic, A. (2013). Numerical analysis of laminar flow heat transfer of nanofluids in a flattened tube. International Communications in Heat and Mass Transfer, 44, 52-57. https://doi.org/10.1016/j.icheatmasstransfer.2013.03.003
Huminic, G., & Huminic, A. (2018). The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. International Journal of Heat and Mass Transfer, 119, 813-827. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.155
Ibrahim, I. N., Sazali, N., Jamaludin, A. S., Ramasamy, D., Soffie, S. M., & Othman, M. H. D. (2019). A review on vehicle radiator using various coolants. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 59(2), 330-337.
Kannaiyan, S., Boobalan, C., Umasankaran, A., Ravirajan, A., Sathyan, S., & Thomas, T. (2017). Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. Journal of Molecular Liquids, 244, 469-477. https://doi.org/10.1016/j.molliq.2017.09.035
Karimi, A., & Afrand, M. (2018). Numerical study on thermal performance of an air-cooled heat exchanger: Effects of hybrid nanofluid, pipe arrangement and cross section. Energy Conversion and Management, 164(March), 615-628. https://doi.org/10.1016/j.enconman.2018.03.038
Kaska, S. A., Khalefa, R. A., & Hussein, A. M. (2019). Hybrid nanofluid to enhance heat transfer under turbulent flow in a flat tube. Case Studies in Thermal Engineering, 13(December 2018), 4-13. https://doi.org/10.1016/j.csite.2019.100398
Kole, M., & Dey, T. K. (2010). Viscosity of alumina nanoparticles dispersed in car engine coolant. Experimental Thermal and Fluid Science, 34(6), 677-683. https://doi.org/10.1016/j.expthermflusci.2009.12.009
Kumar, A., Hassan, M. A., & Chand, P. (2020). Heat transport in nanofluid coolant car radiator with louvered fins. Powder Technology, 376, 631-642. https://doi.org/10.1016/j.powtec.2020.08.047
Nabil, M. F., Azmi, W. H., Hamid, K. A., Zawawi, N. N. M., Priyandoko, G., & Mamat, R. (2017). Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: A comprehensive review on performance. International Communications in Heat and Mass Transfer, 83, 30-39. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.008
Naraki, M., Peyghambarzadeh, S. M., Hashemabadi, S. H., & Vermahmoudi, Y. (2013). Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. International Journal of Thermal Sciences, 66, 82-90. https://doi.org/10.1016/j.ijthermalsci.2012.11.013
Okonkwo, E. C., Wole-Osho, I., Kavaz, D., & Abid, M. (2019). Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids. Journal of Molecular Liquids, 292, Article 111377. https://doi.org/10.1016/j.molliq.2019.111377
Oliveira, G. A., Contreras, E. M. C., & Bandarra Filho, E. P. (2017). Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator. Applied Thermal Engineering, 111, 1450-1456. https://doi.org/10.1016/j.applthermaleng.2016.05.086
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-170. https://doi.org/10.1080/08916159808946559
Pak, B. C., & Cho, Y. I. (2013). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide. Experimental Heat Transfer : A Journal of , Thermal Energy Transport , Storage , and Conversion, January, 2013, 37-41.
Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., & Jamnani, M. S. (2011). Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communications in Heat and Mass Transfer, 38(9), 1283-1290. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001
Plant, R. D., & Saghir, M. Z. (2021). Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. International Journal of Thermofluids, 9, 100055. https://doi.org/10.1016/j.ijft.2020.100055
Soylu, S. K., Atmaca, İ., Asiltürk, M., & Doğan, A. (2019). Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Applied Thermal Engineering, 157, Article 113743. https://doi.org/10.1016/j.applthermaleng.2019.113743
Said, Z., Assad, M. E. H., Hachicha, A. A., Bellos, E., Abdelkareem, M. A., Alazaizeh, D. Z., & Yousef, B. A. (2019). Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 112, 183-194. https://doi.org/10.1016/j.rser.2019.05.052
Sajid, M. U., & Ali, H. M. (2019). Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews, 103, 556-592. https://doi.org/10.1016/j.rser.2018.12.057
Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Samykano, M., Harun, W. S. W., Najafi, M., & Mazlan, M. (2021). A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties. Sustainable Energy Technologies and Assessments, 44, Article 101058.
Soltanimehr, M., & Afrand, M. (2015). Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Applied Thermal Engineering, 105, 716-723. https://doi.org/10.1016/j.applthermaleng.2016.03.089
Sundar, L. S., Singh, M. K., & Sousa, A. C. M. (2014a). Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73-83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
Sundar, L. S., Ramana, E. V., Singh, M. K., & Sousa, A. C. (2014b). Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. International Communications in Heat and Mass Transfer, 56, 86-95. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009
Tijani, A. S., & Sudirman, A. S. (2018). Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. International Journal of Heat and Mass Transfer, 118, 48-57. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.083
Tsai, T. H., & Chein, R. (2007). Performance analysis of nanofluid-cooled microchannel heat sinks. International Journal of Heat and Fluid Flow, 28(5), 1013-1026. https://doi.org/10.1016/j.ijheatfluidflow.2007.01.007
Vajjha, R. S., Das, D. K., & Ray, D. R. (2015). Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. International Journal of Heat and Mass Transfer, 80, 353-367. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.018
Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
Zaidan, M. H., Alkumait, A. A. R., & Ibrahim, T. K. (2018). Assessment of heat transfer and fluid flow characteristics within finned flat tube. Case Studies in Thermal Engineering, 12(July), 557-562. https://doi.org/10.1016/j.csite.2018.07.006
Zainal, S., Tan, C., Sian, C. J., & Siang, T. J. (2016). ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular pipe. Journal of Advanced Research in Applied Mechanics, 23(1), 20-35.
ISSN 0128-7680
e-ISSN 2231-8526