PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 24 (2) Jul. 2016 / JST-0566-2015

 

Artificial Neural Network for Modelling Rainfall-Runoff

Aida Tayebiyan, Thamer Ahmad Mohammad, Abdul Halim Ghazali and Syamsiah Mashohor

Pertanika Journal of Science & Technology, Volume 24, Issue 2, July 2016

Keywords: Artificial neural networks, back propagation algorithm, rainfall-runoff modelling

Published on: 12 June 2016

The use of an artificial neural network (ANN) is becoming common due to its ability to analyse complex nonlinear events. An ANN has a flexible, convenient and easy mathematical structure to identify the nonlinear relationships between input and output data sets. This capability could efficiently be employed for the different hydrological models such as rainfall-runoff models, which are inherently nonlinear in nature and therefore, representing their physical characteristics is challenging. In this research, ANN modelling is developed with the use of the MATLAB toolbox for predicting river stream flow coming into the Ringlet reservoir in Cameron Highland, Malaysia. A back propagation algorithm is used to train the ANN. The results indicate that the artificial neural network is a powerful tool in modelling rainfall-runoff. The obtained results could help the water resource managers to operate the reservoir properly in the case of extreme events such as flooding and drought.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-0566-2015

Download Full Article PDF

Share this article

Recent Articles