PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 44 (2) May. 2021 / JTAS-2148-2020

 

Plant Growth-promoting Microorganisms Isolated from Plants as Potential Antimicrobial Producers: A Review

Bazilah Marzaini and Aslizah Mohd-Aris

Pertanika Journal of Social Science and Humanities, Volume 44, Issue 2, May 2021

DOI: https://doi.org/10.47836/pjtas.44.2.01

Keywords: Antimicrobial producers, biocontrol agents, phytopathogen, plant growth-promoting microorganism (PGPM), plant pathogen

Published on: 28 May 2021

The agricultural industry worldwide faces challenges in the struggle against plant diseases. In efforts to increase agricultural intensities, the dependency on agrochemicals for crop protection has become significantly high. Moreover, the increasing use of agrochemical-based products has resulted in multidrug-resistant pathogens and environmental pollution. This paper reviews the biocontrol capacity of plant growth-promoting microorganisms (PGPMs) originating from plants towards plant pathogens. The current trend in discovering new compounds has shown antimicrobial activity gaining immense interest due to its vast potential. On a related note, PGPMs are an aspect of that research interest that can be further explored as antimicrobial producers. In this work, we also covered the types of biocontrol mechanisms pertaining to PGPMs as well as their roles in biocontrol activity. A biocontrol approach exploits disease-suppressive microorganisms to improve plant health by controlling related pathogens. The understanding of these microorganisms and mechanisms of pathogen antagonismare primary factors in ensuring improvement for future applications. Inevitably, there is indeed room for rigorous expansion with respect to PGPMs in the future of agriculture.

  • Abdalla, M. A., Aro, A. O., Gado, D., Passari, A. K., Mishra, V. K., Singh, B. P., & McGaw, L. J. (2020). Isolation of endophytic fungi from South African plants, and screening for their antimicrobial and extracellular enzymatic activities and presence of type I polyketide synthases. South African Journal of Botany, 134, 336-342. https://doi.org/10.1016/j.sajb.2020.03.021

  • Abdallah, R. A. B., Mokni-Tlili, S., Nefzi, A., Khiareddine, H. J., & Daami-Remadi, M. (2016). Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biological Control, 97, 80-88. https://doi.org/10.1016/j.biocontrol.2016.03.005

  • Abro, M. A., Sun, X., Li, X., Jatoi, G. H., & Guo, L. D. (2019). Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. The Plant Pathology Journal, 35(6), 598-608. https://doi.org/10.5423/PPJ.OA.05.2019.0129

  • Agrillo, B., Mirino, S., Tatè, R., Gratino, L., Gogliettino, M., Cocca, E., Tablid, N., Nabtid, E., & Palmieri, G. (2019). An alternative biocontrol agent of soil-borne phytopathogens: A new antifungal compound produced by a plant growth promoting bacterium isolated from North Algeria. Microbiological Research, 221, 60-69. https://doi.org/10.1016/j.micres.2019.02.004

  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001

  • Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. https://doi.org/10.2478/v10102-009-0001-7

  • Anitha, A., & Rabeeth, M. (2009). Control of Fusarium wilt of tomato by bioformulation of Streptomyces griseus in green house condition. African Journal of Basic and Applied Sciences, 1(1-2), 9-14.

  • Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6), 673-677.

  • Ashwini, N., & Srividya, S. (2013). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-136. https://doi.org/10.1007/s13205-013-0134-4

  • Attia, M. S., El-Sayyad, G. S., Abd Elkodous, M., & El-Batal, A. I. (2020). The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae, 266, 109289. https://doi.org/10.1016/j.scienta.2020.109289

  • Azabou, M. C, Gharbi, Y., Medhioub, I., Ennouri, K., Barham, H., Tounsi, S., & Ali Triki, M. (2020). The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biological Control, 142, 104168. https://doi.org/10.1016/j.biocontrol.2019.104168

  • Backman, P. A., & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biological Control, 46(1), 1-3. https://doi.org/10.1016/j.biocontrol.2008.03.009

  • Bacon, C. W., & White, J. F., (2000). Microbial endophytes. CRC Press.

  • Bahroun, A., Jousset, A., Mhamdi, R., Mrabet, M., & Mhadhbi, H. (2018). Antifungal activity of bacterial endophytes associated with legumes against Fusarium solani: Assessment of fungi soil suppressiveness and plant protection induction. Applied Soil Ecology, 124, 131-140. https://doi.org/10.1016/j.apsoil.2017.10.025

  • Barea, J.-M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761-1778. https://doi.org/10.1093/jxb/eri197

  • Battu, P. R., & Reddy, M. S. (2009). Isolation of secondary metabolites from Pseudomonas fluorescens and its characterization. Asian Journal of Research in Chemistry, 2, 26-29.

  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4 Suppl), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020

  • Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1-26. https://doi.org/10.1038/ja.2005.1

  • Calvente, V., de Orellano, M. E., Sansone, G., Benuzzi, D., & Sanz de Tosetti, M. I. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226-229. https://doi.org/10.1038/sj.jim.7000117

  • Carvalho, T. L. G., Balsemao-Pires, E., Saraiva, R. M., Ferreira, P. C. G., & Hemerly, A. S. (2014). Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany, 65(19), 5631-5642. https://doi.org/10.1093/jxb/eru319

  • Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2014). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8(2), 281-295. https://doi.org/10.1111/1751-7915.12238

  • Cecagno, R., Fritsch, T. E., & Schrank, I. S. (2015). The plant growth-promoting bacteria azospirillum amazonense: Genomic versatility and phytohormone pathway. BioMed Research International, 2015, 898592. https://doi.org/10.1155/2015/898592

  • Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218, 41-48. https://doi.org/10.1016/j.micres.2018.10.002

  • Cheng, G., Ning, J., Ahmed, S., Huang, J., Ullah, R., An, B., Hao, H., Dai, M., Huang, L., Wang X., & Yuan, Z. (2019). Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrobial Resistance and Infection Control, 8(1), 158. https://doi.org/10.1186/s13756-019-0623-2

  • Chin-A-Woeng T. F. C., Bloemberg, G. V., van der Bij A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H-V., de Bruijn, F. J., Thomas-Oates, J. E., & Lugtenberg, B. J. J. (1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant Microbe Interactions, 11(11), 1069-1077. https://doi.org/10.1094/mpmi.1998.11.11.1069

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959. https://doi.org/10.1128/aem.71.9.4951-4959.2005

  • Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53, 97-119. https://doi.org/10.1146/annurev-phyto-080614-120132

  • Costa, F. G., Zucchi, T. D., & de Melo, I. S. (2013). Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Brazilian Archives of Biology and Technology, 56(6), 948-955. https://doi.org/10.1590/s1516-89132013000600009

  • Darma, R., Purnamasari, M., Agustina, D., Pramudito, T. E., Sugiharti, M., & Suwanto, A. (2016). A strong antifungal-producing bacteria from bamboo powder for biocontrol of Sclerotium rolfsii in melon (Cucumis melo var. amanta). Journal of Plant Pathology and Microbiology, 7(2). https://doi.org/10.4172/2157-7471.1000334

  • de Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93, 54-63. https://doi.org/10.1094/phyto.2003.93.1.54

  • Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749-759. https://doi.org/10.1038/nrmicro2637

  • Fibach-Paldi, S., Burdman, S., & Okon, Y. (2011). Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiology Letters, 326(2), 99-108. https://doi.org/10.1111/j.1574-6968.2011.02407.x

  • Fiume, G., & Fiume, F. (2008). Biological control of corky root in tomato. Communications in Agricultural and Applied Biological Sciences, 73(2), 233-248.

  • Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1), 73. https://doi.org/10.1186/s13568-018-0608-1

  • Gamalero, E., & Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169(1), 13-22. https://doi.org/10.1104/pp.15.00284

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401

  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signalling processes. Soil Biology and Biochemistry, 37(3), 395-412. https://doi.org/10.1016/j.soilbio.2004.08.030

  • Harwood, C. R., Mouillon, J. M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6), 721-738. https://doi.org/10.1093/femsre/fuy028

  • Heimpel, G., & Mills, N. (2017). Biological control: Ecology and applications. Cambridge University Press.

  • Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity?. Biological Conservation, 122(1), 113-130. https://doi.org/10.1016/j.biocon.2004.07.018

  • Horrigan, L., Lawrence, R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives, 110(5), 445-456. https://doi.org/10.1289/ehp.02110445

  • Hossain, M. M., Sultana, F., Miyazawa, M., & Hyakumachi, M. (2014). The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. Journal of Oleo Science, 63(4), 391-400. https://doi.org/10.5650/jos.ess13143

  • Islam, M. R., Jeong, Y. T., Lee, Y. S., & Song, C. H. (2012). Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology, 40(1), 59-65. https://doi.org/10.5941/myco.2012.40.1.059

  • Jones, P., Garcia, B. J., Furches, A., Tuskan, G. A., & Jacobson, D. (2019). Plant host-associated mechanisms for microbial selection. Frontiers in Plant Science, 10, 862. https://doi.org/10.3389/fpls.2019.00862

  • Karlsson, M., Atanasova, L., Jensen, D. F., & Zeilinger, S. (2017). Necrotrophic mycoparasites and their genomes. Microbiology Spectrum, 5(2), 1005-1026. https://doi.org/10.1128/microbiolspec.funk-0016-2016

  • Kim, H., Rim, O. S., & Bae, H. (2018). Antimicrobial potential of metabolites extracted from ginseng bacterial endophyte Burkholderia stabilis against ginseng pathogens. Biological Control, 128, 24-30. https://doi.org/10.1016/j.biocontrol.2018.08.020

  • Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845

  • Labuschagne, N., Pretorius, T., & Idris, A. H. (2010). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In D. Maheshwari (Ed.), Plant growth and health promoting bacteria: Microbiology monographs (pp. 211-230). Springer. https://doi.org/10.1007/978-3-642-13612-2_9

  • Lacava, P. T., Li, W., Araújo, W. L., Azevedo, J. L., & Hartung, J. S. (2007). The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. Journal of Microbiology, 45(5), 388-393.

  • Larran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92, 17-23. https://doi.org/10.1016/j.biocontrol.2015.09.002

  • Lee, J. C., Yang, X., Schwartz, M., Strobel, G., & Clardy, J. (1995). The relationship between an endangered North American tree and an endophytic fungus. Chemistry and Biology, 2(11), 721-727. https://doi.org/10.1016/1074-5521(95)90100-0

  • Lee, K. J., Kamala-Kannan, S., Sub H. S., Seong, C. K., & Lee G. W. (2008). Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World Journal of Microbiology and Biotechnology, 24(7), 1139-1145. https://doi.org/10.1007/s11274-007-9585-2

  • Li, J. Y., & Strobel, G. A. (2001). Jesterone and hydroxy-jesteroneantioomycetecyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57(2), 261-265. https://doi.org/10.1016/s0031-9422(01)00021-8

  • Liotti, R. G., da Silva Figueiredo, M. I., da Silva, G. F., de Mendonça, E. A. F., & Soares, M. A. (2018). Diversity of cultivable bacterial endophytes in Paulliniacupana and their potential for plant growth promotion and phytopathogen control. Microbiological Research, 207, 8-18. https://doi.org/10.1016/j.micres.2017.10.011

  • Maksimov, I. V., Abizgil’dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Applied Biochemistry and Microbiology, 47(4), 333-345. https://doi.org/10.1134/s0003683811040090

  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663. https://doi.org/10.1111/1574-6976.12028

  • Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticides: where we stand?. In N. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 37-75). Springer. https://doi.org/10.1007/978-81-322-2068-8_2

  • Moin, S., Ali, S. A., Hasan, K. A., Tariq, A., Sultana, V., Ara, J., & Ehteshamul-Haque, S. (2020). Managing the root rot disease of sunflower with endophytic fluorescent Pseudomonas associated with healthy plants. Crop Protection, 130, 105066. https://doi.org/10.1016/j.cropro.2019.105066

  • Montealegre, J. R., Reyes, R., Pérez, L. M., Herrera, R., Silva, P., & Besoain, X. (2003). Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 6(2), 116-127. https://doi.org/10.4067/S0717-34582003000200006

  • Murali, M., & Amruthesh, K. N. (2015). Plant growth-promoting fungus Penicillium oxalicum enhances plant growth and induces resistance in pearl millet against downy mildew disease. Journal of Phytopathology, 163(9), 743-754. htps://doi.org/10.1111/jph.12371

  • Naamala, J., & Smith, D. L. (2020). Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy, 10(8), 1179. https://doi.org/10.3390/agronomy10081179

  • Naik, R., Pawar, V., & Suryawanshi, D. (2015). In vitro biofilm formation of Pseudomonas fluorescens, a promising technique for waste water treatment. International Journal of Science and Research, 4(2), 1602-1606.

  • Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9

  • Pahari, A., Pradhan, A., Nayak, S., & Mishra, B. B. (2017). Bacterial siderophore as a plant growth promoter. In J. K. Patra, C. Vishnuprasad, & G. Das (Eds.), Microbial biotechnology (pp.163-180). Springer. https://doi.org/10.1007/978-981-10-6847-8_7

  • Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4(5), 330-337. https://doi.org/10.7150/ijbs.4.330

  • Prashar, P., Kapoor, N., & Sachdeva, S. (2013). Biocontrol of plant pathogens using plant growth promoting bacteria. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (Vol. 12, pp. 319-360). Springer. https://doi.org/10.1007/978-94-007-5961-9_10

  • Pratiwi, R. H., Hidayat, I., Hanafi, M., & Mangunwardoyo, W. (2017). Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima. Journal of Microbiology, 55(4), 289-295. https://doi.org/10.1007/s12275-017-6311-0

  • Radjacommare, R., Kandan, A., Nandakumar, R., & Samiyappan, R. (2004). Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice plants. Journal of Phytopathology, 152(6), 365-370. https://doi.org/10.1111/j.1439-0434.2004.00857.x

  • Ramesh, R., & Phadke, G. S. (2012). Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 37, 35-41. https://doi.org/10.1016/j.cropro.2012.02.008

  • Rekha, V., John, S. A., & Shankar, T. (2010). Antibacterial activity of Pseudomonas fluorescens isolated from rhizosphere soil. International Journal of Biological Technology, 1(3), 10-14.

  • Sang, M. K., Jeong, J.-J., Kim, J., & Kim, K. D. (2018). Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight. Annals of Applied Biology, 172(2), 208-223. https://doi.org/10.1111/aab.12413

  • Segarra, G., Casanova, E., Avilés, M., & Trillas, I. (2010). Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial Ecology, 59(1), 141-149. https://doi.org/10.1007/s00248-009-9545-5

  • Sehrawat, A., & Sindhu, S. S. (2019). Potential of biocontrol agents in plant disease control for improving food safety. Defence Life Science Journal, 4(4), 220-225. https://doi.org/10.14429/dlsj.4.14966

  • Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14(1), 271. https://doi.org/10.1186/1471-2164-14-271

  • Trujillo, M. E., Velázquez, E., Miguélez, S., Jiménez, M. S., Mateos, P. F., & Martínez-Molina, E. (2007). Characterization of a strain of Pseudomonas fluorescens that solubilizes phosphates in vitro and produces high antibiotic activity against several microorganisms. In E. Velázquez & C. Rodríguez-Barrueco (Eds.), First international meeting on microbial phosphate solubilisation. Developments in plant and soil sciences (Vol. 102, pp. 265-268). Springer. https://doi.org/10.1007/978-1-4020-5765-6_41

  • Turner, J. T., & Backman P. A. (1991). Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Disease, 75(4), 347-353. https://doi.org/10.1094/PD-75-0347

  • Vachee, A., Mossel, D. A. A., & Leclerc, H. (1997). Antimicrobial activity among Pseudomonas and related strains of mineral water origin. Journal of Applied Microbiology, 83(5), 652-658. https://doi.org/10.1046/j.1365-2672.1997.00274.x

  • Vaz, A. B. M., Mota, R. C., Bomfim, M. R. Q., Vieira, M. L. A., Zani, C. L., Rosa, C. A., & Rosa, L. H. (2009). Antimicrobial activity of endophytic fungi associated with Orchidaceaein Brazil. Canadian Journal of Microbiology, 55(12), 1381-1391. https://doi.org/10.1139/w09-101

  • Wang, M., Li, E., Liu, C., Jousset, A., & Salles, J. F. (2017). Functionality of root-associated bacteria along a salt marsh primary succession. Frontiers in Microbiology, 8, 2102. https://doi.org/10.3389/fmicb.2017.02102

  • Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250-256. https://doi.org/10.1094/phyto-97-2-0250

  • Wicaksono, W. A., Jones, E. E., Casonato, S., Monk, J., & Ridgway, H. J. (2018). Biological control of Pseudomonas syringae pv. actinidiae (Psa) the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biological Control, 116, 103-112. https://doi.org/10.1016/j.biocontrol.2017.03.003

  • Wu, H., Yan, Z., Deng, Y., Wu, Z., Xu, X., Li, X., Zhou, X., & Luo, H. (2020). Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. Acta Ecologica Sinica, 40(5), 383-387. https://doi.org/10.1016/j.chnaes.2020.02.008

  • Xu, L.-Q., Zeng, J.-W., Jiang, C.-H., Wang, H., Li, Y.-Z., Wen, W.-H., Li, J-H., Wang, F., Ting, W-J., Sun, Z-Y., & Huang, C.-Y. (2017). Isolation and determination of four potential antimicrobial components from Pseudomonas aeruginosa extracts. International Journal of Medical Sciences, 14(13), 1368-1374. https://doi.org/10.7150/ijms.18896

  • Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., & Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, 126328. https://doi.org/10.1016/j.micres.2019.126328

  • Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Scientific Reports, 9(1), 4950. https://doi.org/10.1038/s41598-019-41160-x

  • Zheng, Y.-K., Miao, C.-P., Chen, H.-H., Huang, F.-F., Xia, Y.-M., Chen, Y.-W., & Zhao, L.-X. (2017). Endophytic fungi harbored in Panax notoginseng: Diversity and potential as biological control agents against host plant pathogens of root-rot disease. Journal of Ginseng Research, 41(3), 353-360. https://doi.org/10.1016/j.jgr.2016.07.005

  • Zloch, M., Thiem, D., Gadzała-Kopciuch, R., & Hrynkiewicz, K. (2016). Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere, 156, 312-325. https://doi.org/10.1016/j.chemosphere.2016.04.130

  • Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54-62. https://doi.org/10.1016/j.biocontrol.2016.05.012

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-2148-2020

Download Full Article PDF

Share this article

Recent Articles