e-ISSN 2231-8534
ISSN 0128-7702
Shazana Sharir, Nurfatin Zulkipli, Azhari Mohamad, Farah Ayuni Farinordin, Shafiq Zakeyuddin, Abdullah Samat, Amir Shah Ruddin Md Sah and Shukor Md Nor
Pertanika Journal of Social Science and Humanities, Volume 44, Issue 3, August 2021
DOI: https://doi.org/10.47836/pjtas.44.3.01
Keywords: Fish movement, fish telemetry, habitat use, hydroelectric impacts, post-inundation
Published on: 30 August 2021
The drastic changes in hydroelectric reservoir development created a completely new ecosystem that affects the river, particularly in the inundated area. In this study, five Neolissochilus soroides and Channa lucius were surgically implanted with a unique coded acoustic transmitter to observe the habitat utilisation and movement activity in Tembat Reservoir after the inundation process. All of the individuals were released into the transition zone of the reservoir and observed using passive and active acoustic tracking devices from April to December 2018. Kruskal-Walis test showed no significant difference between the average size of core area for N. soroides and C. lucius, x2(1) = 1.320, p = 0.251. The home range also showed a similar result for N. soroides and C. lucius where there was an insignificant difference, x2(1) = 0.273, p = 0.602. However, duration wise, N. soroides spend more time in the transition zone, R1 (M = 2.71 hrs, SE = 0.38), and C. lucius in the riverine zone, R5 (M = 7.14 hrs, SE = 6.13) and R6 (M = 3.85 hours, SE = 6.36). From the active tracking survey, PCA identified three (62.32%) and four (71.19%) components with eigenvalues greater than 1 for N. soroides and C. lucius, respectively. Three most important habitat parameters for N. soroides were the size of river (r = 0.97), existence of canopy cover (r = 0.77), and substrate type (r = 0.79).While, for C. lucius were mesohabitat type (r = 0.79), distance to riffle (r = 0.97), existence of canopy cover (r = 0.90), and elevation (r = 0.90). A 24-hour movement frequency analysis for both species revealed two active hours of movement at dusk and dawn for both species. From the study, it is known that N. soroides and C. lucius respond differently towards the inundation of the reservoir. The findings in this study can be implemented for effective aquatic management and conservation plan to ensure sustainable dam development.
Agostinho, A. A., Pelicice, F. M., & Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4), 1119–1132. https://doi.org/10.1590/S1519-69842008000500019
Albanese, B., Angermeier, P. L., & Dorai-Raj, S. (2004). Ecological correlates of fish movement in a network of Virginia streams. Canadian Journal of Fisheries and Aquatic Sciences, 61(6), 857–869. https://doi.org/10.1139/F04-096
Ambak, M. A., Mat Isa, M., Zaidi, M. Z., & Mazlan, A. G. (2012). Fishes of Malaysia. Penerbit Universiti Malaysia Terengganu.
Arantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J., & Winemiller, K. O. (2019). Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability, 37, 28–40. https://doi.org/10.1016/j.cosust.2019.04.009
Asaad, I., Lundquist, C. J., Erdmann, M. V., & Costello, M. J. (2017). Ecological criteria to identify areas for biodiversity conservation. Biological Conservation, 213(Part B), 309–316. https://doi.org/10.1016/j.biocon.2016.10.007
Azrita. (2010). Parameter fisika, kimia dan biologi penciri habitat ikan bujuk (Channa lucius, Channidae) [Physical, chemical and biological parameters characterizing the habitat of persuasive fish (Channa lucius, Channidae)]. http://fpik.bunghatta.ac.id/files/downloads/Seminar%20Nasional/Prosiding/azrita.pdf
Azrita, A., Basri, Y., & Syandri, H. (2015). EA preliminary study on domestication of bluespotted snakehead (Channa lucius, Channidae) in concrete tank. Journal of Aquaculture Research and Development, 6(2), 1000309. https://doi.org/10.4172/2155-9546.1000309
Baillie, B. R., Hicks, B. J., van den Heuvel, M. R., Kimberley, M. O., & Hogg, I. D. (2013). The effects of wood on stream habitat and native fish assemblages in New Zealand. Ecology of Freshwater Fish, 22(4), 553-566. https://doi.org/10.1111/eff.12055
Baltz, D. (1990). Autoecology. In C. Schreck & P. Moyle (Eds.), Methods for fish biology (pp. 593–598). American Fisheries Society.
Boujard, T. (1995). Diel rhythms of feeding activity in the European catfish, Silurus glanis. Physiology and Behavior, 58(4), 641–645. https://doi.org/10.1016/0031-9384(95)00109-V
Ceschin, S., Tombolini, I., Abati, S., & Zuccarello, V. (2015). The effect of river damming on vegetation: Is it always unfavourable? A case study from the River Tiber (Italy). Environmental Monitoring and Assessment, 187(5). https://doi.org/10.1007/s10661-015-4521-7
Clarke, A. D., Telmer, K. H., & Shrimpton, J. M. (2007). Habitat use and movement patterns for a fluvial species, the Arctic grayling, in a watershed impacted by a large reservoir: Evidence from otolith microchemistry. Journal of Applied Ecology, 44(6), 1156–1165. https://doi.org/10.1111/j.1365-2664.2007.01350.x
Clough, S., & Ladle, M. (1997). Diel migration and site fidelity in a stream-dwelling cyprinid, Leuciscus leuciscus. Journal of Fish Biology, 50(5), 1117–1119. https://doi.org/10.1006/jfbi.1996.0360
Crook, D. A. (2004). Is the home range concept compatible with the movements of two species of lowland river fish?. Journal of Animal Ecology, 73(2), 353–366. https://doi.org/10.1111/j.0021-8790.2004.00802.x
Dolloff, C. A., & Warren, M. L. (2003). Fish relationships with large wood in small streams. American Fisheries Society Symposium, 37, 179-193.
Fearnside, P. M. (2014). Impacts of Brazil’s Madeira River Dams: Unlearned lessons for hydroelectric development in Amazonia. Environmental Science and Policy, 38, 164–172. https://doi.org/10.1016/j.envsci.2013.11.004
Fetterplace, L. C., Davis, A. R., Neilson, J. M., Taylor, M. D., & Knott, N. A. (2016). Active acoustic tracking suggests that soft sediment fishes can show site attachment: A preliminary assessment of the movement patterns of the blue-spotted flathead (Platycephalus caeruleopunctatus). Animal Biotelemetry, 4(1), 15. https://doi.org/10.1186/s40317-016-0107-6
Fisheries Conservation Foundation. (2019). Mahseer research project: Final report. Ministry of Agriculture and Forest Royal Government of Bhutan.
Frontier, S. (1976). Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modd́le du bâton brisé [Study of the decay of eigenvalues in a principal component analysis: Comparison with the broken stick model]. Journal of Experimental Marine Biology and Ecology, 25(1), 67–75. https://doi.org/10.1016/0022-0981(76)90076-9
Guo, Z., Liu, J., Lek, S., Li, Z., Zhu, F., Tang, J., Britton, R., & Cucherousset, J. (2017). Coexisting invasive gobies reveal no evidence for temporal and trophic niche differentiation in the sublittoral habitat of Lake Erhai, China. Ecology of Freshwater Fish, 26(1), 42–52. https://doi.org/10.1111/eff.12249
Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19(2), 149–161. https://doi.org/10.1007/BF02289162
Hayne, D. W. (1949). Calculation of size of home range. Journal of Mammalogy, 30(1), 1–18. https://doi.org/10.2307/1375189
Horký, P., Slavík, O., & Bartoš, L. (2008). A telemetry study on the diurnal distribution and activity of adult pikeperch, Sander lucioperca (L.), in a riverine environment. Hydrobiologia, 614(1), 151–157. https://doi.org/10.1007/s10750-008-9503-0
Huang, L., & Li, J. (2016). Status of freshwater fish biodiversity in the Yangtze River Basin, China. In S.-I. Nakano, T. Yahara, & T. Nakashizuka (Eds.), Aquatic biodiversity conservation and ecosystem services (pp. 13–30). Springer International Publishing. https://doi.org/10.1007/978-981-10-0780-4_2
Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74(8), 2204–2214. https://doi.org/10.2307/1939574
Kano, Y., Dudgeon, D., Nam, S., Samejima, H., Watanabe, K., Grudpan, C., Grudpan, J., Magtoon, W., Musikasinthorn, P., Nguyen, P. T., Praxaysonbath, B., Sato, T., Shibukawa, K., Shimatani, Y., Suvarnaraksha, A., Tanaka, W., Thach, P., Tran, D. D., Yamashita, T., & Utsugi, K. (2016). Impacts of dams and global warming on fish biodiversity in the Indo-Burma hotspot. PLOS One, 11(8), e0160151. https://doi.org/10.1371/journal.pone.0160151
Khai, N. X., Kusairi, M. N., Ahmad, S., Syahaneem, M. Z., & Fatimah, M. A. (2015). Market potential analysis for tengas (Neolissochilus sp.) in the Malaysian market. International Food Research Journal, 22(4), 1429–1432.
Khaironizam, M. Z. (2010). Some biological aspects of Neolissochilus spp. (Teleostel: Cyprinidae) from Peninsular Malaysia. Penerbit Universiti Malaya.
Khaironizam, M. Z., Zakaria-Ismail, M., & Armbruster, J. W. (2015). Cyprinid fishes of the genus Neolissochilus in Peninsular Malaysia. Zootaxa, 3962(1), 139–157. https://doi.org/10.11646/zootaxa.3962.1.7
Kimmel, B. L., & Groeger, A. W. (1984). Factors controlling primary production in lakes and reservoirs: A perspective. Lake and Reservoir Management, 1(1), 277–281. https://doi.org/10.1080/07438148409354524
Laffan, S. W., & Taylor, M. D. (2013, 1-6 December). FishTracker: A GIS toolbox for kernel density estimation of animal home ranges that accounts for transit times and hard boundaries. Proceedings - 20th International Congress on Modelling and Simulation. https://doi.org/10.36334/modsim.2013.h2.laffan
Lapointe, N. W. R., Odenkirk, J. S., & Angermeier, P. L. (2013). Seasonal movement, dispersal, and home range of northern snakehead Channa argus (Actinopterygii, Perciformes) in the Potomac River catchment. Hydrobiologia, 709, 73–87. https://doi.org/10.1007/s10750-012-1437-x
Li, X., Li, Y. R., Chu, L., Zhu, R., Wang, L. Z., & Yan, Y. Z. (2016). Influences of local habitat, tributary position, and dam characteristics on fish assemblages within impoundments of low-head dams in the tributaries of the Qingyi River, China. Zoological Research, 37(2), 67–74. https://doi.org/10.13918/j.issn.2095-8137.2016.2.67
Lonzarich, D. G., Lonzarich, M. R., & Warren, J. (2000). Effects of riffle length on the short-term movement of fishes among stream pools. Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1508–1514. https://doi.org/10.1139/f00-082
Martin-Smith, K. M. (1998). Effects of disturbance caused by selective timber extraction on fish communities in Sabah, Malaysia. Environmental Biology of Fishes, 53(2), 155–167. https://doi.org/10.1023/A:1007496424730
Mohamad, A., Sharir, S., Farinordin, F. A., Zakeyuddin, M. S., Shukor, A. M., Samat, A., & Nor, S. M. (2020). Length-weight relationship and relative condition factor of Tor tambra in Tembat Reservoir, Terengganu, Peninsular Malaysia: Indication of environmental health. In L. Mohd Sidek, G. H. A. Salih, & M. H. Boosroh (Eds.), International Conference on Dam Safety Management and Engineering (pp. 447–456). Springer Singapore.
Pinder, A. C., Britton, J. R., Harrison, A. J., Nautiyal, P., Bower, S. D., Cooke, S. J., Lockett, S., Everard, M., Katwate, U., Ranjeet, K., Walton, S., Danylchuk, A. J., Dahanukar, N., & Raghavan, R. (2019). Mahseer (Tor spp.) fishes of the world: Status, challenges and opportunities for conservation. Reviews in Fish Biology and Fisheries, 29(2), 417–452. https://doi.org/10.1007/s11160-019-09566-y
Rainboth, W. J. (1996). Fishes of the Cambodian Mekong. Food And Agriculture Organization of The United Nations.
Rutherford, J. C., Blackett, S., Blackett, C., Saito, L., & Davies-Colley, R. J. (1997). Predicting the effects of shade on water temperature in small streams. New Zealand Journal of Marine and Freshwater Research, 31(5), 707–721. https://doi.org/10.1080/00288330.1997.9516801
Schmutz, S., & Moog, O. (2018). Dams: Ecological impacts and management. In S. Schmutz & J. Sendzimir (Eds.), Riverine ecosystem management: Science for governing towards a sustainable future (pp. 111–127). Springer International Publishing. https://doi.org/10.1007/978-3-319-73250-3_6
Sharir, S., Mohamad, A., Zakeyuddin, S., Samat, A., Close, P., & Shukor, M. N. (2019). Ichtyofaunal diversity of Tiang River in Royal Belum Forest Reserve, Malaysia. Malayan Nature Journal, 71(4), 391–400.
Shoji, J., Mitamura, H., Ichikawa, K., Kinoshita, H., & Arai, N. (2017). Increase in predation risk and trophic level induced by nocturnal visits of piscivorous fishes in a temperate seagrass bed. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-04217-3
Tenaga Nasional Berhad Research. (2007). Detailed environmental impact assesment. TNBR.
Tian, K., Yang, W., Zhao, Y. W., Yin, X. A., Cui, B. S., & Yang, Z. F. (2020). Development of a hydrological boundary method for the river-lake transition zone based on flow velocity gradients, and case study of Baiyangdian Lake transition zones, China. Water, 12(3), 1–23. https://doi.org/10.3390/w12030674
Vander Wal, E., & Rodgers, A. R. (2012). An individual-based quantitative approach for delineating core areas of animal space use. Ecological Modelling, 224(1), 48–53. https://doi.org/10.1016/j.ecolmodel.2011.10.006
Walton, S. E., Gan, H. M., Raghavan, R., Pinder, A. C., & Ahmad, A. (2017). Disentangling the taxonomy of the mahseers (Tor spp.) of Malaysia : An integrated approach using morphology , genetics and historical records disentangling the taxonomy of the mahseers (Tor spp.) of Malaysia. Reviews in Fisheries Science and Aquaculture, 25(3), 171–183. https://doi.org/10.1080/23308249.2016.1251391
Weber, E. P. S., Weisse, C., Schwarz, T., Innis, C., & Klide, A. M. (2009). Anesthesia, diagnostic imaging, and surgery of fish. Compendium: Continuing Education for Veterinarians, 31(2), E11.
Weliange, W. S., Amarasinghe, U. S., Moreau, J., & Villanueva, M. C. (2006). Diel feeding periodicity, daily ration and relative food consumption in some fish populations in three reservoirs of Sri Lanka. Aquatic Living Resources, 19(3), 229–237. https://doi.org/10.1051/alr:2006023
Wilkinson, C. L., Yeo, D. C. J., Tan, H. H., Fikri, A. H., & Ewers, R. M. (2018). Land-use change is associated with a significant loss of freshwater fish species and functional richness in Sabah, Malaysia. Biological Conservation, 222, 164–171. https://doi.org/10.1016/j.biocon.2018.04.004
Woolnough, D. A., Downing, J. A., & Newton, T. J. (2009). Fish movement and habitat use depends on water body size and shape. Ecology of Freshwater Fish, 18(1), 83–91. https://doi.org/10.1111/j.1600-0633.2008.00326.x
Zafirah, N., Nurin, N. A., Samsurijan, M. S., Zuknik, M. H., Rafatullah, M., & Syakir, M. I. (2017). Sustainable ecosystem services framework for tropical catchment management: A review. Sustainability, 9(4), 546–571. https://doi.org/10.3390/su9040546
Zeiringer, B., Seliger, C., Greimel, F., & Schmutz, S. (2018). River hydrology, flow alteration, and environmental flow. In S. Schmutz & J. Sendzimir (Eds.), Riverine ecosystem management: Science for governing towards a sustainable future (pp. 67–89). Springer International Publishing. https://doi.org/10.1007/978-3-319-73250-3_4
Zhong, Y., & Power, G. (1996). Environmental impacts of hydroelectric projects on fish resources in China. Regulated Rivers: Research and Management, 12(1), 81–98. https://doi.org/10.1002/(SICI)1099-1646(199601)12:1<81::AID-RRR378>3.0.CO;2-9
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles