e-ISSN 2231-8534
ISSN 0128-7702
Hamza Abubakar and Shamsul Rijal Muhammad Sabri
Pertanika Journal of Social Science and Humanities, Volume 29, Issue 4, October 2021
DOI: https://doi.org/10.47836/pjst.29.4.29
Keywords: Extended Weibull distribution, investment growth rate, maximum likelihood, simulated annealing
Published on: 29 October 2021
The Weibull distribution is one of the most popular statistical models extensively applied to lifetime data analysis such as survival data, reliability data, wind speed, and recently in financial data, due to itsts flexibility to adaptably imitate different families of statistical distributions. This study proposed a modified version of the two-parameter Weibull distribution by incorporating additional parameters in the internal rate of return and insurance claims data. The objective is to examine the behaviour of investment return on the assumption of the proposed model. The proposed and the existing Weibull distribution parameters have been estimated via a simulated annealing algorithm. Experimental simulations have been conducted mimicking the internal rate of return (IRR) data for both short time (small sample) and long-term investment periods (large samples). The performance of the proposed model has been compared with the existing two-parameter Weibull distribution model in terms of their R-square (R2), mean absolute error (MAE), root mean squared error (RMSE), Akaike’s information criterion (AIC), and the Kolmogorov-Smirnov test (KS). The numerical simulation revealed that the proposed model outperformed the existing two-parameter Weibull distribution model in terms of accuracy, robustness, and sensitivity. Therefore, it can be concluded that the proposed model is entirely suitable for the long-term investment period. The study will be extended using the internal rate of return real data set. Furthermore, a comparison of the various Weibull distribution parameter estimators such as metaheuristics or evolutionary algorithms based on the proposed model will be carried out.
Abbasi, B., Jahromi, A. H. E., Arkat, J., & Hosseinkouchack, M. (2006). Estimating the parameters of Weibull distribution using a simulated annealing algorithm. Applied Mathematics and Computation, 183(1), 85-93. https://doi.org/10.1016/j.amc.2006.05.063
Abbasi, B., Niaki, S. T. A., Khalife, M. A., & Faize, Y. (2011). A hybrid variable neighborhood search and simulated annealing algorithm to estimate the three parameters of the Weibull distribution. Expert Systems with Applications, 38(1), 700-708. https://doi.org/10.1016/j.eswa.2010.07.022
Abubakar, H., & Danrimi, M. L. (2021). Hopfield type of artificial neural network via election algorithm as heuristic search method for random boolean ksatisfiability. International Journal of Computing and Digital System, 10(2), 660-673. http://dx.doi.org/10.12785/ijcds/100163
Abubakar, H., Rijal, S., Sabri, S. R. M., Masanawa, S. A., & Yusuf, S. (2020a). Modified election algorithm in hopfield neural network for optimal random k satisfiability representation. International Journal for Simulation and Multidisciplinary Design Optimization, 16(11), 1–13. https://doi.org/10.1051/smdo/2020008
Abubakar, H., M, S. A., Yusuf, S., & Abdurrahman, Y. (2020b). Discrete artificial dragonflies algorithm in agent based modelling for exact boolean k satisfiability problem. Journal of Advances in Mathematics and Computer Science, 35(4), 115-134. https://doi.org/10.9734/JAMCS/2020/v35i430275
Abubakari, A. G., Kandza-Tadi, C. C., & Moyo, E. (2021). Modified Beta Inverse Flexible Weibull Extension Distribution. Annals of Data Science, 1-29. https://doi.org/10.1007/s40745-021-00330-3
Almazah, M. M. A., Erbayram, T., Akdoğan, Y., AL Sobhi, M. M., & Afify, A. Z. (2021). A new extended geometric distribution: Properties, regression model, and actuarial applications. Mathematics, 9(12), 1336. https://doi.org/10.3390/math9121336
Almetwally, E. M. (2021). Extended odd weibull inverse rayleigh distribution with application on carbon fibres. Mathematical Sciences Letters, 10(1), 5-14. https://doi.org/10.18576/msl/100102
Alrashidi, M., Rahman, S., & Pipattanasomporn, M. (2020). Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds. Renewable Energy, 149, 664-681. https://doi.org/10.1016/j.renene.2019.12.048
Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79. https://doi.org/10.1007/s40300-013-0007-y
Alzaeemi, S. A., & Sathasivam, S. (2020). Artificial immune system in doing 2-satisfiability based reverse analysis method via a radial basis function neural network. Processes, 8(10), Article 1295. https://doi.org/10.3390/pr8101295Bidrama, H., Behboodian, J., & Towhidib, M. (2013). The beta weibull-geometric distribution. Journal of Statistical Computation and Simulation, 83(1), 52-67. https://doi.org/10.1080/00949655.2011.603089
Boonta, S., & Boonthiem, S. (2019). An approximation of minimum initial capital of investment discrete time surplus process with Weibull distribution in a reinsurance company. Journal of Applied Mathematics, 2019, Article 2191509. https://doi.org/10.1155/2019/2191509
Chauhan, S. K., & Malik, S. C. (2017). Evaluation of reliability and MTSF of a parallel system with Weibull failure laws. Journal of Reliability and Statistical Studies, 10(1), 137-148.
Datsiou, K. C., & Overend, M. (2018). Weibull parameter estimation and goodness-of-fit for glass strength data. Structural Safety, 73, 29-41. https://doi.org/10.1016/j.strusafe.2018.02.002
Freitas de Andrade, C., dos Santos, L. F., Macedo, M. V. S., Rocha, P. A. C., & Gomes, F. F. (2019). Four heuristic optimization algorithms applied to wind energy: Determination of Weibull curve parameters for three Brazilian sites. International Journal of Energy and Environmental Engineering, 10, 1-12. https://doi.org/10.1007/s40095-018-0285-5
Dodge, Y. (2008). Kolmogorov–Smirnov test. In The concise encyclopedia of statistics (pp. 283-287). Springer. https://doi.org/10.1007/978-0-387-32833-1_214
Elmahdy, E. E., & Aboutahoun, A. W. (2013). A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling. Applied Mathematical Modelling, 37(4), 1800-1810. http://doi.org/10.1016/j.apm.2012.04.023
Guedes, K. S., de Andrade, C. F., Rocha, P. A., Mangueira, R. D. S., & de Moura, E. P. (2020). Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions. Applied Energy, 268, Article 114952. https://doi.org/10.1016/j.apenergy.2020.114952
Guerra, R. R., Peña-Ramírez, F. A., & Bourguignon, M. (2020). The unit extended Weibull families of distributions and its applications. Journal of Applied Statistics, 1-19. https://doi.org/10.1080/02664763.2020.1796936
Hashmi, S., Ahsan, M., Haq, U., Muhammad, R., & Ozel, G. (2019). The Weibull-Moment Exponential Distribution: Properties, Characterizations & applications. Journal of Reliability and Statistical Studies, 12(1), 1-22.
Hirose, H. (2002). Maximum likelihood parameter estimation in the extended Weibull distribution and its applications to breakdown voltage estimation. IEEE Transactions on Dielectrics and Electrical Insulation, 9(4), 524–536. https://doi.org/10.1109/TDEI.2002.1024429
Kaba, A., & Suzer, A. E. (2021). Metaheuristic data fitting methods to estimate Weibull parameters for wind speed data: A case study of Hasan Polatkan Airport. The Aeronautical Journal, 125(1287), 916-948. https://doi.org/10.1017/aer.2020.136
Kellison, S. G. (2009). The theory of interest (3rd Ed.). McGraw-Hill Education.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
Lee, C., Famoye, F., & Alzaatreh, A. Y. (2013). Methods for generating families of univariate continuous distributions in the recent decades. Wiley Interdisciplinary Reviews: Computational Statistics, 5(3), 219-238. https://doi.org/10.1002/wics.1255
Liao, Q., Ahmad, Z., Mahmoudi, E., & Hamedani, G. G. (2020). A new flexible bathtub-shaped modification of the Weibull model: Properties and applications. Mathematical Problems in Engineering, 2020, Article 3206257. https://doi.org/10.1155/2020/3206257
Okafor, E. G., Ezugwu, O. E., Jemitola, P. O., Sun, Y., & Lu, Z. (2018). Weibull parameter estimation using particle swarm optimization algorithm. International Journal of Engineering and Technology (UAE), 7(3), 7-10. https://doi.org/10.14419/ijet.v7i3.32.18380
Okasha, H. M., & Basheer, A. M. (2020). On marshall-olkin extended inverse weibull distribution: Properties and estimation using type-II censoring data. Journal of Statistics Applications & Probability Letters, 7(1), 9-21. https://doi.org/10.18576/jsapl/070102
Phani, K.K. (1987). A New Modified Weibull Distribution. Communications of the American Ceramic Society, 184(August), 182-184. https://doi.org/10.1111/j.1151-2916.1987.tb05719.x
Pobočíková, I., Sedliačková, Z., & Michalková, M. (2018). Transmuted Weibull distribution and its applications. MATEC Web of Conferences, 157, 1-11. https://doi.org/10.1051/matecconf/201815708007
Sabri, S. R. M., & Sarsour, W. M. (2019). Modelling on stock investment valuation for long-term strategy. Journal of Investment and Management, 8(3), 60-66. https://doi.org/10.11648/j.jim.20190803.11
Sarhan, A. M., & Zaindin, M. (2009). Modified Weibull distribution. Applied Sciences, 11(January 2000), 123-136. https://doi.org/10.1051/matecconf/201815708007
Sarsour, W. M., & Sabri, S. R. M. (2020a). Evaluating the investment in the Malaysian construction sector in the long-run using the modified internal rate of return: A Markov chain approach. The Journal of Asian Finance, Economics, and Business, 7(8), 281–287. https://doi.org/10.13106/jafeb.2020.vol7.no8.281
Sarsour, W. M., & Sabri, S. R. M. (2020b). Forecasting the long-run behavior of the stock price of some selected companies in the Malaysian construction sector: A Markov chain approach. International Journal of Mathematical, Engineering and Management Sciences, 5(2), 296-308. https://doi.org/10.33889/IJMEMS.2020.5.2.024
Sathasivam, S., Mansor, M., Kasihmuddin, M. S. M., & Abubakar, H. (2020). Election algorithm for random k satisfiability in the Hopfield neural network. Processes, 8(5), Article 568. https://doi.org/10.3390/pr8050568
Tang, Y., Xie, M., Lai, C. D., & Goh, T. N. (2002). Statistical analysis of a Weibull extension model, communications in statistics. Theory and Methods, 32(5), 913-928. https://doi.org/10.1081/STA-120019952
Thomas, G. M. (1995). Weibull parameter estimation using genetic algorithms and a heuristic approach to cut-set analysis (Doctoral dissertation). Ohio University, USA.
Wang, M., & Elbatal, I. (2015). The modified Weibull geometric distribution. Metron, 73(3), 303-315. https://doi.org/10.1007/s40300-014-0052-1
Yonar, A., & Pehlivan, N. Y. (2020). Artificial bee colony with levy flights for parameter estimation of 3-p Weibull distribution. Iranian Journal of Science and Technology, Transactions: Science, 44, 851-864. https://doi.org/10.1007/s40995-020-00886-4
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles