e-ISSN 2231-8534
ISSN 0128-7702
Suwapha Sawiphak and Aroon Wongjiratthiti
Pertanika Journal of Social Science and Humanities, Volume 29, Issue 1, January 2021
DOI: https://doi.org/10.47836/pjst.29.1.23
Keywords: Bacillus sp. SNRUSA4, biodegradation, Box-Behnken design, response surface methodology
Published on: 22 January 2021
Polylactic acid (PLA) is increasingly used in food-packaging production. The screening of PLA-food-packaging-degrading bacteria and optimisation of culture conditions for the PLA-food-packaging degradation by PLA-food-packaging-degrading bacteria were investigated for bioplastic waste management purposes. Only bacterial strain SNRUSA4 exhibited an increase in optical density (OD) in Basal Medium (BM) supplemented with 1.0 g/L of PLA-food-packaging as sole carbon source after 4 weeks of incubation. A weight loss of 7.3% and the rough and porous surface of PLA-food-packaging indicated that SNRUSA4 was a PLA-food-packaging-degrading bacterium. SNRUSA4 was able to degrade pure PLA which was confirmed from the clear zone formation around its colony on emulsified pure PLA agar plate. The 16S rRNA gene sequence of SNRUSA4 showed the similarity with thirteen Bacillus species. Hence, the strain SNRUSA4 was assigned as Bacillus sp. SNRUSA4. Response surface methodology with Box-Behnken Design was used to optimise the culture conditions including yeast extract concentration, initial pH value, temperature and agitation speed for growth and PLA-food-packaging degradation of Bacillus sp. SNRUSA4. The optimal conditions of Bacillus sp. SNRUSA4 was discovered in BM at initial pH value 7.02 with yeast extract concentration of 2.56% and agitated at 205.28 rpm at 31.68°C. Under optimal conditions, the OD of Bacillus sp. SNRUSA4 was up to 1.955, and the different OD between before and after optimisation was up to 1.752. Furthermore, the PLA-food-packaging weight loss also increased from 7.30% to 87.10% indicating that the PLA-food-packaging degradation under optimal conditions was higher than the unoptimised conditions. Therefore, Bacillus sp. SNRUSA4 is an efficient strain for degradation of PLA and PLA-food-packaging.
Apinya, T., Sombatsompop, N., & Prapagdee, B. (2015). Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly (lactic) acid in submerged cultures and in soil microcosms. International Biodeterioration and Biodegradation, 99, 23-30. doi: 10.1016/j.ibiod.201 5.01.001
Biniarz, P., Coutte, F., Gancel, F., & Łukaszewicz, M. (2018). High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microbial Cell Factories, 17(1), 1-18. doi: 10.1186/s12934-018-0968-x
Boonmee, C., Kositanont, C., & Leejarkpai, T. (2016). Degradation of poly (lactic acid) under simulated landfill conditions. Environment and Natural Resources Journal, 14(2), 1-9. doi: 10.14456/ennrj.2016.8
Bratcher, D. F. (2018). Bacillus species (Anthrax). In S. S. Long, C. G. Prober & M. Fischer (Eds.), Principles and Practice of Pediatric Infectious Diseases (pp. 770-773). Philadelphia, PA: Elsevier. doi: 10.1016/b978-0-323-401 81-4.00129-8
Brosius, J., Dull, T. J., Sleeter, D. D., & Noller, H. F. (1981). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Journal of Molecular Biology, 148(2), 107-127. doi: https://doi.org/10.1016/0022-2836(81)90508-8
Bubpachat, T., Sombatsompop, N., & Prapagdee, B. (2018). Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polymer Degradation and Stability, 152, 75-85. doi: 10.1016/j.poly mdegradstab.2018.03.023
Butbunchu, N., & Pathom-Aree, W. (2019). Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Frontiers in Microbiology, 10, 1-10. doi: 10.3389/fmicb.2019.02834
Chaisu, K., Charles, A. L., Guu, Y. K., & Chiu, C. H. (2012). Optimization of polylactic acid (PLA) plastic degradation by Aneurinibacillus migulanus using response surface methodology. In International Conference on Biological and Life Sciences (pp. 22-27). Singapore: International Association of Computer Science and Information Technology (IACSIT) Press.
Chen, X. C., Bai, J. X., Cao, J. M., Li, Z. J., Xiong, J., Zhang, L., … & Ying, H. J. (2009). Medium optimization for the production of cyclic adenosine 3′, 5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresource Technology, 100(2), 919-924. doi: https://doi.org/10.1016/j.biortech.2008.07.062
Decorosi, F., Exana, M. L., Pini, F., Adessi, A., Messini, A., Luciana Giovannetti, L., & Viti, C. (2019). The degradative capabilities of new Amycolatopsis isolates on polylactic acid. Microorganisms, 7(590), 1-18. doi: 10.3390/microorganisms7120590
Elsawy, M. A., Kim, K., Park, J., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. doi: https://doi.org/10.1016/j.rser.2017.05.143
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. doi: 10.1016/j.addr.2016.06.012
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791. doi: 10.1111/j.1558-5646.1985. t b00420.x
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Hassaan, M. S., Soltan, M. A., & Ghonemy, M. M. R. (2014). Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus). The Egyptian Journal of Aquatic Research, 40(2), 199-208. doi: 10.1016/j.ejar.2014.04.001
Janorkar, A. V., Metters, A. T., & Hirt, D. E. (2007). Degradation of poly(L-lactide) films under ultraviolet-induced photografting and sterilization conditions. Journal of Applied Polymer Science, 106(2), 1042-1047. doi: https://doi.org/10.1002/app.24692
Jarerat, A., & Tokiwa, Y. (2003). Poly (L-lactide) degradation by Saccharothrix waywayandensis. Biotechnology Letters, 25(5), 401-404. doi: 10.1023/a:1022450431193
Jarerat, A., Tokiwa, Y., & Tanaka, H. (2003). Poly (L-lactide) degradation by Kibdelosporangium aridum. Biotechnology Letters, 25(23), 2035-2038. doi: 10.1023/b:bile.0000004398.38799.29
Jeon, J. H., & Kim, N. M. (2013). Biodegradation of poly(L-lactide) (PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration and Biodegradation, 85, 289-293. doi: 10.1016/jib iod.2013.08.013
Kalil, M. S., Alshiyab, H. S., & Yusoff, W. M. W. (2008). Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum. American Journal of Biochemistry and Biotechnology, 4(4), 393-401. doi: 10.3844/ajbbsp.2008.393.401
Karamanlioglu, M., Houlden, A., & Robson, G. D. (2014). Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost. International Biodeterioration and Biodegradation, 95, 301-310. doi: 10.1 016/j.ibiod.2014.09.006
Khatoon, H., & Rai, J. P. N. (2020). Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology. Biotechnology Reports, 26, 1-10. doi: 10.1016/j.btre.20 20.e00459
Kim, M. N., & Park, S. T. (2010). Degradation of poly (L-lactide) by a mesophilic bacterium. Journal of Applied Polymer Science, 117, 67-74. doi: 10.1002/app.31950
Kim, M. Y., Kim, C., Moon, J., Heo, J., Jung, S. P., & Kim, J. R. (2017). Polymer film-based screening and isolation of polylactic Acid (PLA)- degrading microorganisms. Journal of Microbiology and Biotechnology, 27(2), 342-349. doi: https://doi.org/ 10.4014/jmb.1610.10 015
Kim, O. Y., Mahboob, S., Viayaraghavan, P., Biji, D., Ghanim, A. A. K., Misned, A. F., … & Kim, H. J. (2020). Growth promoting activity of Penaeus indicus by secondary metabolite producing probiotic bacterium Bacillus subtilis isolated from the fish gut. Journal of King Saud University-Science, 32(2), 1641-1646. doi: 10.1016/j.jksus.201 9 .12.023
Konkit, M., Jarerat, A., Khanongnuch, C., Lumyong, S., & Pathom-aree, W. (2012). Poly(lactide) degradation by Pseudonocardia alni AS4.1531(T). Chiang Mai Journal of Science, 39(1), 128-132.
Lee, J. S., Park, H. E., Han, H. Y., Kim, O. Y., & Park, W. S. (2013). Isolation of a marine bacterium capable of biodegrading poly (butylene succinate). Journal of Fisheries and AquaticSciences, 16(1), 41-44. doi: 10.5657/FAS.2013.0041
Liang, T. W., Jen, S. N., Nguyen, A. D., & Wang, S. L. (2016). Application of chitinous materials in production and purification of a poly (L-lactic acid) depolymerase from Pseudomonas tamsuii TKU015. Polymers, 8(98), 1-11. doi: 10.3390/polym8030098
Lipsa, R., Tudorachi, N., Darie-Nita, R. N., Oprică, L., Vasile, C., & Chiriac, A. (2016). Biodegradation of poly (lactic acid) and some of its based systems with Trichoderma viride. International Journal of Biological Macromolecules, 88, 515-526. doi: 10.1016/j.ijbiomac.2016.04.017
Logan, N. A., & Vos, P. D. (2015). Bacillus. In W. B. Whitman (Ed.), Bergey’s manual of systematics of archaea and bacteria (pp. 1-163). Hoboken, NJ: John Wiley & Sons, Inc. doi: 10.1002/9781118960608.gbm 00530
Mirabal, A. S., Scholz, L., & Carus, M. (2013). Bio-based polymers in the world capacities, production and applications: Status quo and trends towards 2020. Retrieved August 19, 2020, from http://bio-based.eu/market_study/media/files/13-06 21MSBiopolymersExcerpt .pdf
Mohammed, S., Behera, H. T., Dekebo, A., & Ray, L. (2019). Optimization of the culture conditions for production of polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. International Journal of Biological Macromolecules, 156, 1064-1080. doi: 10.1016/j.ijbiomac .2019.11.138
Mohanrasu, K., Rao, R. G. R., Dinesh, G. H., Zhang, K., Prakash, G. S., Song, D. P., … & Arun, A. (2020). Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillus megaterium. Fuel, 271, 1-9. doi: 10.1016/j.fuel.2020.117522
Muhonja, C. N., Makonde, H., Magoma, G., & Imbuga, M. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PloS One, 13(7), 1-17. doi: 10.1371/jour nal.pone.0198446
Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials, 10(952), 1-22. doi: 10.3390/ma10080952
Naskar, A., Majumder, R., & Goswami, M. (2020). Bioaccumulation of Ni(II) on growing cells of Bacillus sp. response surface modeling and mechanistic insight. Environmental Technology and Innovation, 20, 1-39. doi: 10.1016/j.eti.2020.101057
Ojha, S. K., Singh, P. K., Mishra, S., Pattnaik, R., Dixit, S., & Verma, S. K. (2020). Response surface methodology based optimization and scale-up production of amylase from a novel bacterial strain, Bacillus aryabhattai KIIT BE-1. Biotechnology Reports, 27, 1-9. doi: 10.1016/ j.btre.2020.e00506
Penkhrue, W., Khanongnuch, C., Masaki, K., Pathom-aree, W., Punyodom, W., & Lumyong, S. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology and Biotechnology, 3, 1431-1442. doi: 10.1007/s1127 4-015-1895-1
Phukon, P., Saikia, J. P., & Konwar, B. K. (2012). Bio-plastic (P-3HB-co-3HV) from Bacillus circulans (MTCC 8167) and its biodegradation. Colloids and Surfaces B: Biointerfaces, 92, 30-34. doi: 10.1016/j.co lsurfb.2011.11.011
Qi, F. F., Huang, M. H., Zheng, Y., & Xu, Q. (2015). Optimization of an A2/O process for tetracycline removal via response surface methodology coupled with a Box–Behnken design. Journal of Environmental Science and Health, 50(7), 735-743. doi: 10.1080/109 34529.2015.1011981
Qi, X., Ren, Y., & Wang, X. (2017). New advances in the biodegradation of poly (lactic) acid. International Biodeterioration and Biodegradation, 117, 215-223. doi: 10.1016/j.ibiod.2017.01.010
Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. doi: 10.1093/oxfordjournals.molbev.a040454
Szumigaj, J., Zakowska, Z., Klimek, L., Rosicka-Kaczmarek, J., & Bartkowiak, A. (2008). Assessment of polylactide foil degradation as a result of filamentous fungi activity. The Polish Journal of Environmental Studies, 17(3), 335-341.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi: 10.1093/m olbev/mst197
Tawakkal, I. S. M. A., Cran, M. J., Miltz, J., & Bigger, S. W. (2014). A Review of poly (lactic acid)-based materials for antimicrobial packaging. Journal of Food Science, 79(8), 1477-1490. doi: 10.1111/1 750-3841.12534
Thompson, J. (1997). The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. doi: 10.1093/nar /25.24.4876
Tian, Y., Fan, Y., Liu, J., Zhao, X., & Chen, W. (2016). Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electronic Journal of Biotechnology, 19, 41-49. doi: 1 0.1016/j.ejbt.2015.11.005
Unrean, P., Nguyen, N. H. A., Visessanguan, W., & Kitsubun, P. (2012). Improvement of nattokinase production by Bacillus subtilis using an optimal feed strategy in fed-batch fermentation. KKU Research Journal, 17(5), 769-777.
Vey, E., Miller, A. F., Claybourn, M., & Saiani, A. (2007). In vitro degradation of poly (lactic-co2-glycolic) acid random copolymers. Macromolecular Symposia, 251(1), 81-87. doi: 10.1002/masy.20075 0511
Yottakot, S., & Leelavatcharamas, V. (2019). Isolation and optimisation of polylactic acid (PLA)-packaging degrading actinomycete for PLA-packaging degradation. Pertanika Journal of Tropical Agricultural Science, 42(3), 1111-1130.
Yun, T. Y., Feng, R. J., Zhou, D. B., Pan, Y. Y., Chen, Y. F., Wang, F., ... & Xie, J. H. (2018). Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere. PloS One, 13(11), 1-21. doi: https://doi.org/10.1371/journal.pone.0206497
Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3, 27-35. doi: 10.1016/j.aiepr.2019.11.002
Zhou, Y., Sun, Y. B., He, H. W., Feng, J. T., Zhang, X., & Han, L. R. (2017). Optimization of medium compositions to improve a novel glycoprotein production by Streptomyces kanasenisi ZX01. AMB Express, 7(1), 1-9. doi: 10.1186/s13568-016-0316-7
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles